JAVA Q&A

How Do I Correctly

Implement the equals() Method?

Tal Cohen

he Java equals() method, which is

defined in java.lang.Object, is used

for instance equality testing (as op-

posed to reference equality, which is
tested using the == operator). Consider,
for example, these two assignments:

Date d1 = new Date(2001, 10, 27);
Date d2 = new Date(2001, 10, 27);

In this case, d1 == d2 returns False (since
== tests for reference equality, and the two
variables are references to different objects).
However, d1.equals(d2) returns True.

The default implementation of equals()
is based on the == operator: Two objects
are equal if and only if they are the same
object. Naturally, most classes should de-
fine their own alternative implementation
of this important method.

However, implementing equals() cor-
rectly is not straightforward. The equals()
method has a contract that says the equal-
ity relation must meet these demands:

e It must be reflexive. For any reference
x, x.equals(x) must return True.

e It must be symmetric. For any two non-
null references x and y, x.equals(y) should
return the exact same value as y.equals(x).

e It must be transitive. For any three ref-
erences X, Y, and z, if x.equals(y) and
y.equals(z) are True, then x.equals(z)
must also return True.

e It should be consistent. For any two ref-
erences x and y, x.equals(y) should re-
turn the same value if called repeated-
ly (unless, of course, either x or y were
changed between the repeated invoca-
tions of equals()).

e For any nonnull reference x, x.equals-
(null) should return False.

This doesn’t sound complicated: The first
three items are the natural mathematical

Tal is a researcher in IBM’s Haifa Research
Labs in Israel. He can be contacted at
tal@forum2.org.

bitp.//www.ddj.com

propetties of equality, and the last two are
trivial programmatic requirements. It looks
like any implementation based on simple
field-by-field comparison would do the
trick. For example, in Listing One the class
Point represents a point in two-dimensional
space, with a suggested implementation for
the equals() method. At first glance, it looks
as though Listing One meets all five de-
mands placed by the contract:

e It is reflexive, since whenever the pa-
rameter o is actually #his (which is what
happens when one invokes it using
x.equals(x)), the fields match and the
result is True.

e It seems symmetric. If some Point ob-
ject p1 finds its fields are equal to those
of some other Point object p2, then p2
would also find that its own fields are
equal to those of p1. For example, af-
ter the two assignments:

Point p1 = new Point(1, 2);
Point p2 = new Point(1, 2);

both p1.equals(p2) and p2.equals(p1) re-
turn True. If, on the other hand, p2 is dif-
ferent than p1, both calls return False.

e It seems transitive, for the same reasons.

e It is clearly consistent.

e Any call of the form x.equals(null) re-
turns False, thanks to the test at the be-
ginning of the code: If the parameter is
not an instance of the class Point, the
method returns False immediately. Since,
in particular, null is not an instance of
Point (nor indeed of any other class),
the condition is met.

However, this is a naive implementa-
tion. As Joshua Bloch shows in his book
Effective Java Programming Language
Guide (Addison-Wesley, 2001), things get
much more complex when inheritance is
involved.

Bloch presents the class ColorPoint (List-
ing Two), which extends Point and adds

Dr. Dobb’s Journal, May 2002

an aspect (namely, a new field). If Color-
Point implements equals() similarly to its
superclass Point, symmetry is violated.
Again, the implementation seems straight-
forward and correct. The problem arises
when two objects are involved, each of a
different class:

ColorPoint p1 = new ColorPoint(1, 2, ColorRED);
Point p2 = new Point(1, 2);

Now, p2.equals(p1) returns True, since
the two fields p2’s equals() method com-
pares, x and y, are indeed equal. Yet
pl.equals(p2) returns False because p2 is
not an instance of the ColorPoint class.

It is important to understand that an in-
correct implementation of equals(), like
that just presented, would cause problems
in many unexpected places; for example,
when the objects are used in various col-
lection classes (that is, in their contain-
ment tests). And you have just seen that
this simple implementation does not pro-
vide symmetry.

Listing Three, an alternative implemen-
tation of equals(), does meet the sym-
metry requirement. While at first it might
seem a better solution, Bloch shows that
it is broken, too. Symmetry is indeed pre-
served. pI and p2 (from the earlier ex-
ample) would both provide the same an-
swer when asked if one equals the other.
However, this implementation violates the
demand for “transitivity.” To see how, add
a third reference, p3:

ColorPoint p3 = new ColorPoint(1, 2, Col or BLUE);

In this case, p1.equals(p2) returns
True, since p1 realizes p2 is not a Col-
orPoint and performs a color-blind com-
parison. p2.equals(p3) also returns True,
since p2, being a simple Point, compares
only the x and y fields and finds them
to be equal. Transitivity demands that if
a=b and b=c, then a=c as well. But in
this case, even though p1.equals(p2) and
p2.equals(p3), the call p1.equals(p3) re-
turns False.

83



One way to avoid the problem is to ig-
nore any fields added in subclasses. This
way, ColorPoint inherits the implementation
of equals() provided by Point, and doesn’t
override it. This solution does meet all the
contract demands for equals(). However, it
is hardly a useful equality test; for example,
pl.equals(p3) returns True, even though
each point has a different color.

Bloch claims that “It turns out that this
is a fundamental problem of equivalence
relations in object-oriented languages.
There is simply no way to extend an in-
stantiable class and add an aspect while
preserving the equals contract.” He sug-
gests that programmers use composition
rather than inheritance to work around
this problem. Taking this approach, the
ColorPoint class would not extend Point,

but rather include a field of that type, like
Listing Four.

Is this the only solution? Not really. The
Point class can be extended, adding an
aspect, while preserving the equals() con-
tract. The basic idea is this: For two ob-
jects to be equal, both must agree that
they are equal. To prevent endless recur-
sion during the mutual verification, you
define a protected helper method, blindly-
Equals(), which compares fields blindly.
The equals() method then verifies that
both objects agree that they are blindly
equal to each other; see Listing Five. Note
how the implementation of blindly-
Equals() is simply the original imple-
mentation of equals(). However, blind-
lyEquals() is not bound by the equals()
contract. By itself, it does not provide a

The faster way
to develop Windows
Device Drivers.

Download a free evaluaton copy of BSQUARE's driver
toolkits at www.bsquare.com/offer/download

84

Dr: Dobb’s Journal, May 2002

symmetric comparison, but it does pro-
vide equals() with the services it needs
to fully meet the contract demands.

In subclasses, you override blindly-
Equals() only, leaving equals() un-
changed. Listing Six, therefore, is a prop-
er implementation of the class ColorPoint,
Again, the implementation of blindly-
Equals() is the original, nonsymmetric at-
tempt to implement equals(). The
equals() method itself is inherited from
Point, and not overridden.

It is easy to see that this new imple-
mentation is both symmetric and transi-
tive, as well as meeting all other demands
placed by the equals() contract. In par-
ticular, when using the three objects de-
fined in the previous examples:

o p2.blindlyEquals(p1) returns True, but
p1.blindlyEquals(p2) returns False. Since
equals() checks both ways, both
pl.equals(p2) and p2.equals(pl) return
False.

e Since pI.equals(p2) returns False (and
D2.equals(p3) returns False as well), the
transitivity demand does not hold in this
case (a#b and b#c means you do not
know in advance if a=c or not).

It can be mathematically proven that
symmetry and transitivity always hold with
this implementation. The symmetry part is
easy: For any two references x and y,
x.equals(y) and y.equals(x) execute the
same code (calling both x.blindlyEquals(y)
and y.blindlyEquals(x), although in a dif-
ferent order). Transitivity can be proven
using reductio ad absurdum. And of
course, the other three contract demands—
reflexivity, consistency, and returning False
when tested on null— are also met.

The technique presented here can be
applied to any object hierarchy you define
in Java. That equals() itself is never over-
ridden means it would have been best if
this implementation was part of the stan-
dard java.lang.Object() class, along with
a default implementation of blindlyEquals(),
which could be easily overridden by each
subclass. However, since this change in the
Java standard libraries is not likely to oc-
cur anytime soon, we will have to be con-
tent with manually including it in programs.

In short, whenever you define a new
class, a definition of blindlyEquals() must
be included as a nonsymmetric compari-
son operation, and an implementation of
equals() (as presented here) should be
added. Then, all subclasses of this newly
defined class need only override blindly-
Equals() to provide a complete, contract-
abiding equals() comparison.

The method presented here can be used
in any object-oriented language, and does
not rely on run-time type information
(other than the instanceof operator, which

bttp.//www.ddj.com



