
Self-Calibration of Metrics of Java Methods

Tal Cohen Joseph (Yossi) Gil
Department of Computer Science

Technion-Israel Institute of Technology
Technion City, Haifa 32000,

Abstract

Self-calibration is a new technique for the study of internal product metrics, sometime called
“observations ” and calibrating these against their frequency, or probability of occurring in com-
mon programming practice (CPP). Data gathering and analysis of the distribution of observations
is an important prerequisite for predicting external qualities, and in particular sofrware complexity.
The main virtue of our technique is that it eliminates the use of absolute values in decision-making,
and allows gauging local values in comparison with a scale computed from a standard and global
database. Method profiles are introduced as a visual means to compare individual projects or cat-
egories of methods against the CPP. Although the techniques are general and could in principle be
applied to traditional programming languages, the focus of this paper is on object-oriented lan-
guages using Java. The techniques are employed in a suite of 17 metrics in a body of circa thirty
thousand Java methods.

1: Introduction

The study of software metrics is one of the most illusive prospects in software engineering.
The major difficulty is in calibrating or even correlating an intemal property of a software system,
i.e., a metric, against an extemal property [3], such as maintainability, by means of a controlled
experiment. The vast resources required for even a single software project precludes running it in
a research laboratory setting; the cost to be incurred in comparing several such projects carried out
in more or less equal settings is outright prohibitive.

This paper offers a different angle of attack on this Gordian knot. This angle, which we may call
“self-calibration”, is based on the hypothesis that professional programmers working in a more or
less fixed settings, and in particular using the same programming language, will follow an implicit
common programming practice (CPP). The CPP can be thought of as the culture of programming
as created collectively by the community of users, educators, and leaders of a certain programming
environment. The scope of the CPP is not defined within a single project or organization, but rather
with respect to a set of widely available specimens of large programs. It refers to the standard
practice and use of the language by recognized leading software manufacturers (such as Sun and
IBM in the case of the Java programming language) and some of their flagship software artifacts,
instead of the champion programmers within an organization.

In many ways, the CPP is similar to the concept of design pattems [4], in the sense that it captures
the folk-lore of software manufacturing. CPP does not however reflect commonly used solutions to
specific recurring programming problems. It is rather the global trend, of using language features
in large programming projects.

94 0-7695-0918-5/00 $10.00 0 2000 IEEE

95

The CPP is therefore manifested in the statistical distribution of a wide variety of intemal product
metrics. Self-calibration amounts to using statistical methods to identify and analyze these distri-
butions. The quality of a certain software project can then be evaluated by placing it on the graphs
of distribution of these metrics.

In order to understand this better consider a metric such as the size of a routine. It is clear that
with all other factors being equal, larger routines are more complicated. A calibration question then
is to determine the extent by which an increase in size from 50 units of size (such as lines of code)
to 100 units raises the cost of maintainability. The self-calibration method avoids this question
by calibrating the size-metric against its relative frequency. The answer then that self-calibration
provides is of the following sort: “Routines of size 50 are common in this kind of projects, and
occur at frequency of 10%. Doubling the size decreases the frequency to 0.01%.” Such a decrease
in frequency would serve as a waming signal to the user of the method. Thus, in self-calibration,
the interpretation assigned to a certain value of a metric is the frequency at which this value occurs
in practice. That is to say, the probability of finding it in programs which follow the CPP.

The appliation of self-calibration is always against a suite of numeric metrics such as that of
Henderson-Sellers [8], Chidamber and Kemerer [2], or Mingins and Avotins [19]. As argued so
convincingly by Meyer [18], each of these metrics must have an underlying theory to justify select-
ing it from the infinite possible values which can be computed on software. Another requirement is
a theory that ascribes a monotonic property to each metric, that an increase in the value of the metric
would always lead to change in the same direction of the desirability of some extemal property. For
example, there are strong theoretical reasons to believe that an increase in size would always lead
to an increase in complexity.

The number of instance variables in a class is an example of a non-monotonic metric, since we
believe that both too small and too high values are undesirable. Many other class-level metrics are
non-monotonic. Therefore, this study limits its scope to methods, instead of whole classes. It is
future research to extend self-calibration to non-monotonic metrics.

The second requirement for the application of self-calibration is the availability of a large input
set, representative of the CPP, .to provide a sound foundation for the statistical analyses. This
requirement is hard to meet in languages such as C++ [21], in which the computation of anything
but the most trivial metrics could not be achieved without accurately parsing the source code, which
is largely unavailable in commercial programs. Maughan and Avotins [14] tackled the first aspect
of this predicament in providing a tool-set for obtaining such metrics in Eiffel [16]. However,
since Eiffel does not yet enjoy wide industrial acceptance it deserves, it cannot be used for self-
calibration. Self-calibration was made possible only with the advent of Java [l] and its bountiful
class file format [lo, Chap. 41. Not only the evaluation of metrics is made technically easier by
a direct analysis of the class file, but it is also possible to collect metrics of commercial software
systems. In principle, a similar approach could have been implemented in other languages relying
on P-code [23] execution, such as Smalltalk [6]. The difficulty is that most P-code representations
are impoverished, and in the case of Smalltalk non-strongly-typed.

Using self-calibration we were able to identify, with excellent confidence levels, a distinct Mandelbrot-
like distribution pattem common to all numerical metrics used in this paper. Each such distribution
is characterized by a single constant IC. Based on the identification of this distribution law, we make
the case that for many purposes the logarithm of each metric is more meaningful than its original
value. The constant K can be used for scaling when several metrics are to be combined into one.

Based on these finding we are able to borrow from the discipline of psychology a visualization
and analysis technique which is primarily used in personality assessment. The borrowed technique,
which we call method proJiles, uses a transformed and normalized coordinate system of numeric

96

metrics to show deviations from CPP. By drawing the method profile of e.g., private methods, we
identified their unique CPF!

Outline. Section 2 describes experimental settings. Section 3 uses cross-tabulation analysis
to discover some important characteristics of Java CPP. The distribution of the numerical metrics
values is investigated in Section 4. Section 5 discusses findings in a table of correlation coefficients
for all numerical metrics. Method profiles are described and used in Section 6. Finally, Section 7
outlines directions for future research.

2: Experimental Setting

Our input database consisted of five software collections, spanning a total of over thirty thousand
methods in nearly three thousand classes. A total of 17 different metrics were computed for each of
the input methods. These indicators were of two kinds: numerical metrics, and categorical metrics,
whose values cannot be expressed as numbers but rather as enumerated types [14]. In our case,
the values of all numerical metrics were natural numbers. However, in general, certain numerical
metrics could be allowed negative as well as non-integral values.

The data was gathered by independently analyzing each class file, using two mechanisms:
1. The class file was loaded into the JVM (Java Virtual Machine) and the Java reflection library was then

2. Our class file parser was then invoked to obtain further information on each method.

We now tum to a more detailed description of the input, the categorical metrics, and the numeri-

The input sets comprised four software libraries and one large application:

used to obtain the signature information for each method defined in the class.

cal metrics which are the subject of this paper.

JDK Runtime Library of Sun Java Development Kir 1.2. This library (j ava . * packages) comprises the
basic runtime services of Java programs, including YO, Java beans, applets, utility classes, etc.

Swing Java Foundation Classes (sometimes called JFC or “Swing”) 1.1. This library, which ships with
JDK 1.2, comprises all j avax. swing. * packages and provides high level GUI functionality.

HotJava Sun HorJava web browser version 2.0. This fairly large application demonstrates the use of ‘pure-
Java’ technology in the implementation of a full-fledged web browser.

XML ZBM XMLfor Java 1.0 A collection of service classes for parsing and creating XML documents in
Java.

CORBA OMG basic COMA classesfor Java 1.2 These are the Object Management Group’s classes to map
the CORBA API to Java.

The class files in each of these five collections were analyzed as described above. Inner classes
were included in our analysis, since, with the exception of the pointer to the containing object, they
behave and are used just like any other classes. About 27% (761 class) of the input classes were
inner classes. The number of methods defined in these classes was 4,391, which is about 14.5%
of all methods. In addition, the input included 244 anonymous classes (9% of all classes) with a
total of 657 methods, which are about 2.2% of all methods. Since our primary concern here is
methods and not classes, methods from anonymous classes were included in the analysis as well,
even though the usage of these classes is, by definition, ad-hoc.

Table 1 summarizes the absolute number of packages, classes, and methods in each of these
software collections, as well as their relative weight in the sample. The total number of methods
used was 30,304. To the best of our knowledge, this is one of the largest software ensembles to be

97

studied in the literature. From these, a total of 747 methods, or fewer than 2.5%, were found to be
native, and hence excluded from our study.

ages in the input are not equal. JDK, Swing

input data, measured either by the number
of classes or the number of methods. In

mon practice study is not easy. For ex- Table 1. Software packages used in the exper-
ample, in our sampling of Java code, we iments.
refrained from using a huge collection of some 5,000 applet classes, which were located by a web
spider. These applets appeared to be quite ad hoc, and not reflective of an orderly Java software
development process. Likewise, data on nearly 140,000 Java methods from the famous IBM San-
Francisco project was not used. An initial analysis indicated that this data exhibits very different
characteristics than those of the other, more easily available data. Specifically, it appears that much
of the implementation of SanFrancisco used a small number of boilerplate classes and methods.

Input selection is a difficult process, which requires balancing factors such as code availability,
personal evaluation of quality, etc. We are currently engaged in extending this study to a wider
variety of large Java software collections, which would provide an even more reflective sample of
the common Java programming practice.

Note that the relative weights of the pack-

and HotJavatogethercomprise 94% ofthe

general, selecting good inputs for a com-

The three categorical metrics included in this study were:

0 Method Sort (SORT) Java distinguishes a special kind of methods, called constructors, which
are only called when an object is constructed. In contrast,jnalizers are somewhat similar to
C++ destructors, but are far less common. Finalizers are invoked just prior to an object being
disposed by the garbage collector. All remaining methods are considered plain.

0 Access Level (ACL) An orthogonal classification of methods is by their visibility or access
level. The access level of a method is either public, private, package, or protected.

0 Abstraction Level (ABS) Yet another classification of methods is by their abstraction level.
Methods designated as abstract cannot have body, and must be ovemdden in descendant
classes. In contrast,$nal methods must have body and cannot be overridden in descendant
classes. All other methods are concrete. Note that the ABS metric is not entirely orthogonal
to SORT, since constructors cannot be abstract or final.

There are at least two other categorical metrics which can be thought of as part of this framework,
but are not reported here. A distinction could be made between static and non-static methods.
Also, one could use the return type, as well as information gathered by data flow analysis to further
classify plain methods as inspectors (also known as selectors), mutators (also known as modijiers),
and even revealers (which are methods that allow direct modification of state from outside).

Fourteen numerical metrics, in three major groups were studied in this research.

Intrinsic Complexity (IS)
carried out in the method itself and the difficulty in understanding the message source.

These are metrics which pertain to the complexity of the computation

1. McCabe [15] Cyclomaric Complexiy (MCC) A value of 1 indicates the method has no branches; it is
executed in a “fall-through” linear manner. Higher values indicate a higher number of branches.

2. Size in bytecodes (BC) Note that in the absence of source code, this is the closest approximation we
have to the widely accepted LOC metric. In fact, we argue that BC is in many ways preferable to

98

LOC, since the measure it gives of program size is independent of indentation and other formatting
personal preferences.

3. Number of Local Variables (LV) The total number of local variables as allocated on the JVM stack.
This includes the method parameters, as well as the implicit this parameter in non-static methods.

4. Number of Modified Local Variable (MLV) The number of local variables which the method can
modify (write to) during execution.

5. Mathematical Opcodes (MathOp) The number of mathematical opcodes (including integer and float
arithmetic) appearing in the compiled method.

6. Insrantiation Opcodes (NewOp) The number of instantiation sites in the compiled code, i.e., the num-
ber of times new and similar opcodes are found.

Self Interaction (SZ). This is the group of metrics concerned with the interoperability of the
method with other members, such as methods, static methods and fields, of the class it is defined in.

7. Messages Sent to This (MT) The number of call sites in the code that send messages to this. Note
that the number of call sites (here and in other metrics) is hardly an indicator of the actual calls made
during the method’s execution: a single call site may be executed numerous times (e.g., inside a for
loop) or not at all.

8 . Static Messages (SM) The number of call sites for static messages (i.e., the number of times the
opcode invokestatic appears in the method’s bytecodes).

9. Parameters (PARAM) The number of parameters the function accepts, excluding the invisible param-
eter this for non-static methods.

10. Number of Accessed Self-Fields (ASF) The number of fields, in this, that are potentially accessed
(for read only) by the method.

1 1 . Number of Modified Self-Fields (MSF) The number of fields, in this, that are potentially modified
by the method.

Interaction with Others (IO). This group of metrics deal with the complexity of dependence of
a method in other classes to perform its duties.

12. Messages Sent to Others (MO) The number of call sites in the code used for sending messages to
objects other than this. Naturally, in some runs the resulting message can be a message to this,
depending on the call target’s nature (e.g., a local variable that can be assigned this).

13. NumberofAccessed Fields (AF) The number of fields, in objects other than this, that are potentially
accessed (for read only) by the method.

14. Number of Modified Fields (MF) The number of fields, in objects other than this, that are potentially
modified by the method.

3: Analysis of Categorical Metrics

In this section we study the distribution of the categorical metrics in our sample. Table 2(a)
is a cross table of the abstraction level (ABS) metric by the access level metric (ACL). From the
last row of the table we see that the vast majority, over 75%, of methods are public. All other
methods are distributed roughly equally between the three remaining categories: private, protected,
and package. This phenomenon cannot be explained solely by the large weight of library code in
our input, since in restricting the measurements to Hotlava we find that 69% of all methods are
public. Thus, it appears that the abundance of public access level is a typical characteristic of Java
programming.

99

Final
Concrete

Private Protected Package I Public
11 .1% 11.4% 13.1% 64.4%
7.6% 9.5% 9.8% 73.1%

Abstract I 0.0% 1 3.4% 1 2.2% I 94.4%
Total 1 6.8% 1 8.9% I 9.0% 1 75.3%

Plain
Constructor
Total

(a) Cross table of ABS by ACL

7.5% 9.1% 7.0% 76.4%
2.5% 7.1% 21.9% 68.4%
6.8% 8.9% 9.0% 75.3%

(b) Cross table of ACL by ABS

Plain
Constructor
Total

Table 2. Cross tables of abstraction (ABS) vs. access level (ACL)

2.9% 84.2% 12.9%
0.0% 100.0% 0.0%
2.5% 86.3% 11.2%

I Private 1 Protected 1 Package 1 Public
Finalizer I 0.0% I 75.9% I 0.0% I 24.1%

(a) Cross table of SORT by ACL

I Final 1 Concrete I Abstract
Finalizer I 0.0% I 100.0% I 0.0%

(b) Cross table of SORT by ABS

Table 3. Cross tables of method sort (SORT) by abstraction level (ABS) and by ac-
cess level (ACL).

The finding that only about 9% of all methods have package access level is rather surprising in
its indication of low encapsulation at the package abstraction level. A related phenomena is that
less than 6% of abstract methods are not public. (Note that Java does not allow private methods to
be abstract.)

The largest fraction of non-public access level occurs at final methods. This can be explained by
final methods tending to be of low implementation level and hence requiring stronger encapsulation.

Examining the last column in this table we see that an overwhelming majority (86%) of all
methods are “concrete”, and that Java programs make minimal use (2.5%) of method finalization.
Even in JDK, which must finalize many methods for security reasons, the fraction of final methods
is small (4.8%). In contrast, in HotJava finalized methods are much less frequent (0.7%).

The dual of Table 2(a) is given in Table 2(b) which cross tabulates ACL by ABS.
Further insight into the usage of access level can be gained from Table 3(a), which cross tabulates

method sort (SORT) against ACL. We see that a rather large fraction (21%) of constructors have
package access level. In other words, many classes can only be instantiated from within the pack-
age. Combining this bit of information with the fact that most methods are public we may find here
an indication of usage of the ABSTRACT FACTORY and FACTORY METHOD design pattems [4].

We also see that the use of finalizers is rare. In fact, only about one in a thousand classes includes
a finalizer. Curiously, finalizers tend to be protected, but due to the small number of finalizers, the
statistical relevance of this feature is debatable.

Table 3(b) cross tabulates SORT by ABS. There is not much surprising information in this table.
In Java all constructors must be concrete. The small number of finalizers in our sample are all
concrete, even though this is not mandated by the language.

4: Distribution of Numerical Metrics

In this section we study the distribution of our 14 numerical metrics. Table 4 gives some of the
essential statistics of each of these metrics. These statistics were computed only for the 26,254
non-abstract, non-native methods.

A metric which was widely studied in the literature is the number of parameters to methods.
Meyer [17] argues that in a good object oriented design, the average value of this metric tends

100

Min
1
1
0
0
0
0
0
0
0
0
0
0
0
0

Metric
1. McCabe (MCC)
2. Bytecodes (BC)
3. Local variables (LV)
4. Modified locals (MLV)
5. Math opcodes (MathOp)
6. New opcodes (NewOp)
7. Msg. to t h i s (MT)
8. Static msg. (SM)
9. Parameters (PARAM)
10. Acc. self fields (ASF)
1 1 . Mod. self fields (MSF)
12. Msg. to others (MO)
13. Accessed fields (AF)
14. Modified fields (MF)

Max #values
136 73

7566 654
65 35
63 23

204 69
378 38
74 41

211 35
19 17
25 20
42 29

268 92
72 25
28 17

Median
1

18
2
0
0
0
0
0
1
0
0
1
0
0

-
Mean
2.53

51.48
2.96
0.58
0.86
0.49
0.88
0.38
1.07
0.72
0.46
2.37
0.3 1
0.14

-

-

Common
1
5
1
0
0
0
0
0
1
0
0
0
0
0

SD
4.20

133.47
2.69
1.40
4.06
2.96
2.05
2.10
1.33
1.21
1.41
6.36
1.18
0.69

x
i dan
166%
259%
91%

242%
474%
608%
234%
556%
124%
168%
310%
268%
380%
480% -

Table 4. Essential statistics of numerical metrics.

to be small. In Eiffel [16] Base library, the average number of arguments is 0.4, while in Eiffel
Vision (which can be thought of as the Eiffel equivalent of Swing), this number is 0.7. Lorenz
and Kidd [l 11 report on only slightly higher numbers, ranging between 0.3 and 0.9, in a variety of
Smalltalk projects. Table 4 shows that in Java this number is even higher. The maximal number of
arguments to methods is 3 in Eiffel Base, and 7 in Eiffel Vision. In contrast, in our study of Java,
we find that there is at least one method with as many as 19 (!) arguments, One can also surmise
from the “# values” column that this is not a singular phenomena. In fact, 98 methods in our sample
had 8 or more arguments. A possible explanation is that our sample size of circa thirty thousand
methods was much larger than the 5,489 methods found in Eiffel Base+Vision libraries together.
We will revisit this point below after deriving a formula approximating metric value distribution.

Lorenz and Kidd also report that the average number of message sends in a method ranges
between 5 and 20 in the various Smalltalk projects they studied. In our suite the number of message
sends is the sum of the MT, SM and MO metrics. In total, we have that Java methods make an
average of 3.63 method calls, which is much less than the corresponding Smalltalk values.

Table 4 also reveals a huge standard deviation (SD) as a phenomenon which sweeps all metrics.
In fact, the SD is typically several times larger than the mean value. Another indication of skewness
in metrics distribution is that the minimum value is equal to the median value in 10 out of the 14
distributions, and equal to the common value in 11 of them. Even in the remaining distributions,
the median and the common are much closer to the minimum than to the maximum of the range.
Similar behavior is exhibited by the mean statistics, which also tends to be close to the minimum.

These finding lead us to the non-surprising belief that methods obey a Zipf-like distribution [24],
i.e., that there is a rather large number of “small” methods, and that the number of “big” methods
decreases along a hyperbolic curve. This belief is also strengthened by examining the BC metrics
in which we see that the average number of byte codes is around 50, where the median is 18,
which roughly correspond to two or three source code lines. (It is also interesting to note that the
most common bytecode value is 5, which is exactly the size of a standard “get” method such as
java.awt.Component.getName).

In order to verify this, we examined more closely the distribution of methods’ cyclomatic com-
plexity (MCC), and the number of bytecodes. The results are as depicted in Figure 1. Both charts in
the figure are drawn in a log-log scale. By doing so, we are able to simultaneously test all steps in
the Tukey [22] ladder for analysis of distribution. (The exponential decay hypothesis, y = KlOkZ,

101

fifth on the Tukey ladder is being excepted here.)

The fact that most points at the lower right comer in the chart appear to fall on a horizontal
line is no coincidence. These points correspond to those values of the metric that show only a
small number of times in our inputs. The points on the lowermost horizontal line correspond to
those metric values which show up exactly once, i.e, with frequency 1/26,254. The next such line
corresponds to a frequency of 2126,254, etc.

We see that in the log-log coordinate system, both distributions can be approximated fairly accu-
rately by a straight line. The coefficients of these two lines are given in the respective charts. Thus,
if f(z) denotes the frequency in which a numerical metric shows the value z, we have that

logf(z) = c - I< log(z) , (1)

where C and K are some constants, or alternatively

where c is some other constant (c = 10'). Equation (2) is reminiscent of Mandelbrot law [12] for
distribution of words in natural language text.

We applied similar analysis to all other metrics. Since the minimal value of these metrics is zero
it was necessary to shift their values up by 1. For example, Figure 2 gives the distribution in the
number of parameters and the number of modified self fields.

In the figure we see again that the distribution follows a straight line in the log-log scale. In fact,
a similar distribution pattem shows up in all 14 numerical metrics. Table 5 summarizes the results
of linear regression analysis in the log-log space of all numerical metrics.

We see that the values of I< are usually in the range of 2 to 4. The only exception is the BC
metric, for which K = 1.46. The value of I<- can be used as a weighting factor in combining
several metrics into a single composite metric [9, Chap 5.41. Statistically, the value of K is crucial
in computing the essential statistics of a distribution of the sort of (2). It is not difficult to see that
if the distribution of r obeys (2), then the expected value of z depends only on K (and not on the
size of the sample)

102

- . . . ,
predictors of the respective values of adis-
tribution aPProximated by (21, and hence

for all I< > 2, where

CO

12. Msg. to Others (MO . *.I7 -0.09 0.92 0
13. Accessedfields (AF) 2.78 -0.39 0.90 6.8e-13
14. Modified fields (MF) 3.25 -0.26 0.97 7.6e-13

((k) = 2-K (4)
x=1

(The function ((a) is nothing other than Riemann’s Zeta function, but this is inessential to the
derivation leading to (3).) When I< 5 2, E (z) is unbounded, i.e., it increases with the size of the
data. In our case, this phenomena is to be expected in the BC metric.

If IC 5 3, then the SD is not bounded and
will depend on the sample size.

Unfortunatelv, (3) and (5) are not good

8. stafic msg. (S M)

- c
-0.10
-0.20
0.36
0.00

-0.61
-0.99
-0.22
-0.95
0.60
0.36
0.05

- fil -
0.93
0.86
0.79
0.90
0.91
0.80
0.93
0.80
0.91
0.94
0.97

P
0
0

7.7e-13
5%-12

0
4.9e-14

0
3.2e- 13
3.9e-09
3.le-12

0

103

values look even smaller when compared to the 5% and 1% confidence levels commonly used in
tests of this sort. With high confidence we conclude then that the distribution of metric values can
be explained by a linear regression model.

In finding the regression constants, we did not try to ensure that

where f (m) denotes the predicted frequency of a metric assuming a value m.
Let us now apply this linear regression model to find the frequency of methods with eight or more

parameters. By using the appropriate constants from Table 5 into (2) we find that this frequency
is 0.4% (to reach this value, we have to repeatedly apply (2) for all integer values of z greater
than 8. The sum converges to 0.4%). In other words, in the abovementioned collection of Eiffel
methods we would then expect about 21 such methods. The fact that there are none (a Poisson
distribution model can be easily applied here) is significant, and indicates a meaningful difference
in style between the two languages.

The high values of R2 and the small values of p do not only reassure us in the linear regression
model. We argue that the logarithm of a metric, or more precisely,

m’=log(m+l), (7)

where m is the original metric value, is more meaningful then the non-transformed value.
Consider for example the method size. It is not so important to know that the number of byte-

codes is exactly (say) 1968. More important is the order of magnitude, which is reflected by the
transformed value. This also holds with metrics with a smaller range of variability such as the
number of parameters.

I Metricvalue 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 I 10
j F’redictedFrequency I 6.44% I 2.19% I 0.95% I 0.48% I 0.27% I 0.16% I 0.11% I 0.07% I 0.05%

Table 6. Predicted frequency of methods by the number of parameters.

In checking Table 6, we see that an increase of 1 in the value of the metric from 2 to 3 reduces
the predicted frequency by a factor of three. On the other hand, an increase from 9 to 10 reduces
the predicted frequency only by a third, and is therefore much less significant. These aberrations
are eliminated by using the transformed logarithmic metric value.

Table 7 is a revision of Table 4 where the statistics were computed using the transformed metrics
values. The values presented in the table are after applying the transformation inverse. Doing so
is tantamount (almost) to computing the geometrical instead of the arithmetical mean. Comparing
Table 4 and Table 7 we see similar phenomena for all metrics: as expected, the mean value de-
creases by using the logarithmic transformation. Also, although the SD remains large, we see that
it decreases not only in absolute terms, but also in relation to the new values of the mean.

2. Bytecodes (BC)
3. Local variables (LV)

Table 7. Essential statistics of the transformed metrics

104

5: Correlating Numerical Metrics (Omitted)

6: Categorical Metrics vs. Numerical Metrics

We now turn to the study of the values of the numerical metrics in the different categories as
defined by the categorical metrics. To this end, “profile diagrams” are introduced here as an eco-
nomical and effective means for visualizing and understanding the numerical metric characteristics
of a single method or a group of methods.

Figure 3 gives the profile of public, protected, private and package level access methods. The
ticks on the X-axis correspond to the metrics, with the standard numbering as used above (see e.g.,
Table 4). Recall that metrics 1-6 belong in the intrinsic-complexity group, metrics 7-11 form the
self-interaction group, while the interaction-with-others group includes metrics 12-14.

The Y-axis uses the transformed logarithmic metrics
value. In order to be able to describe multiple metrics using
the same scale, we applied the standard linear scaling and
shifting which brings the distribution to a mean 0 and a SD
1. A profile of a group of methods (or a single method for
that matter) is drawn in the diagram by marking the values
of all metrics and then connecting the points in each group
of methods.

’

1
D.

I/.
Let us first concentrate in the intrinsic complexity group

of metrics. We see that private methods achieve higher val- .,,
ues, by 0.4 to 0.6 SD units, compared to the entire collec- M- l f i . 14

tion of methods. This is in agreement with our intuition,
which is that private methods will tend to hide the nitty-
gritty of class implementation. A similar phenomenon, but
to a lesser extent, is observed with protected methods. The intrinsic complexity of these methods is
higher than that of the average by 0.15 to 0.2 SD units. In contrast, protected and public methods
are marginally simpler than the average. In fact, the profiles of these two categories are very similar
in the IC metrics group.

Moving on to the self-interaction group of metrics, we see that the differences between the four
ACL categories here are much smaller. Private methods still tend to have higher metric values in
this group. One can also notice that protected methods rank slightly higher than the average in this
group. No such clear statement can be made about protected and package level access methods.
However, in contrast with the previous group of metrics, this group distinctly separates this two
categories. It is interesting to note that “package” methods have a small number of accessed self
fields, and at the same time, a high number of modified self fields. This could indicate that these
methods are used for granting classes in the package privileged access to intemal fields.

In the third, interaction-with-others, group of metrics we again see that protected methods give
higher metric values, and that private methods even exceed these. Since the bulk of the methods are
public, it is hardly surprising that in this group, just as in all other groups, public methods scores
are very close to the average.

Figure 3. Profiles of the differ-
ent Categories Of ACL.

Figure 4(a) shows the profiles of the different categories of SORT.
In the figure we see that finalizers tend to be significantly simpler than other methods in all metric

groups, with the exception of only two metrics. It is somewhat surprising that finalizers send more
messages to t h i s than plain methods. This point requires further investigation. Constructors on

105

1 2 3 4 5 t l 7 8 0 1 0 , 1 1 2 1 J I 4 , 2 3 4 I S 7 I 0 1 0 1 , 1 2 1 1 1 4
UDlS wmzs4 oc. SI IQ) u n D”M nc SI IQ1

(a) SORT (b) ABS

Figure 4. Profiles of the different categories of SORT (a) and ABS (b).

the other hand tend to be simpler than most other methods, with few notable exceptions. It is not
surprising that constructors tend to modify self fields, and require a large number of parameters.

The fact that by language definition, constructors are obliged to call (directly or indirectly) an
inherited constructor, explains why constructors tend to have a slightly larger than the average t h i s
calls. Again, since the bulk of methods are plain, their behavior is close to the average.

Finally, Figure 4(b) shows the profile of concrete vs. final methods (most numerical metrics are
inapplicable to abstract methods). Not much can be observed in this figure. However, it is apparent
that final methods have lesser metric values in the IO group. More research is required to sort out
this point.

7: Future research

This first work on self-calibration only seryed to demonstrate the technique. However, much
more work must be done in order to apply the technique even in the limited domain of Java methods.
We see several directions in which this work could and should be extended in the near future.

Metria Suite Several well known metrics, such as LOC or Halstead Software Science metrics [7], were
not included here. Similarly, the return type of a method (void, primitive, or polymorphic), or its
classification as static or non-static were missing.

Data Set As large as our input was, we believe that there is still need to expand it to include other prominent
examples of Java programming.

Analysis Techniques It is not entirely clear that metrics should be always shifted by the magic value 1, and
further statistical investigation is required to sort this point out. Similarly, we need mathematical tech-
niques for constraining the linear regression to satisfy (6). Also, we believe that the linear regression
would be even better if intervals are used to classify some of the rarer metric values.

Application We intend to apply the technique to analyze profiles of not only categories of methods, but also
of projects. Initial results in this direction show that the SanFrancisco methods exhibit a very distinct
method profile.

More importantly, we note that self-calibration should not be limited to the study of Java meth-
ods. It would be interesting to apply it to classes. As mentioned above, this requires more research
into the topic of calibrating non-monotonic metrics.

106

References

K. Arnold and J. Gosling. The Java Programming Language. The Java Series. Addison-Wesley, 1996.
S. Chidamber and C. Kemerer. A metrics suite for object oriented design. IEEE Trans. Software Eng.,

N. Fenton. Software Metrics: A rigorous Approach. Chapman and Hall, London, 1991.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Professional Computing. Addison-Wesley, 1995.
J. Y. Gil and A. Itai. The complexity of type analysis of object oriented programs. In E. Jul, editor, Pro-
ceedings of the 12th European Conference on Object-Oriented Programming, number 1445 in Lecture
Notes in Computer Science, pages 601634, Brussels, Belgium, July20-24 1998. ECOOP’98, Springer
Verlag.
A. Goldberg and D. Robson. Smalltalk-BO: The Language. Addison-Wesley, 1989.
M. H. Halstead. Elements of Software Science. Elsevier Scientific Publishing Company, Amsterdam,
1977.
B. Henderson-Sellers. Some metrics for object-oriented software engineering. In J. P. B. Meyer and
M. Tokoro, editors, Proceedings of Technology of Object-Oriented Languages and Systems: TOOLS,
pages 131-139, Sydney, Australia, 1991. Prentice Hall.
B. Henderson-Sellers. Object Oriented Metrics. Object-Oriented Series. Prentice-Hall, 1996.
T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley Publishing Com-
pany, Inc., 2nd edition, 1999.
M. Lorenz and J. Kidd. Object-Oriented Somure Merrics. F’rentice-Hall, 1994.
B. B. Mandelbrot. An informational theory of the statistical structure of languages. In W. Jackson,
editor, Communication Theory, pages 486-502. Betterworth, 1953.
Using MATLAB. http://www.mathworks.com/accesslhelpdes~elp/pdf~oc/matlab/usingml.pdf,
1998.
G. Maughan and J. Avotins. A meta-model for object-oriented reengineering and metrics collection. In
Proceedings of TOOLS Europe 1996,1996.
T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, 2(4):308-320,
Dec. 1976.
B. Meyer. EIFFEL: The Language. Object-Oriented Series. Prentice-Hall, 1992.
B. Meyer. Reusable Software The Base Object-Oriented Component Libraries. Prentice-Hall Object-
Oriented. Prentice-Hall, 1994.
B. Meyer. The role of object-oriented metrics. IEEE Computer, 31(11):123-125, November 1998.
C. Mingins and J. Avotins. Quality suite for reusable eiffel software (qsres). Technical Report 6,
Monash University, Caulfield Campus, 900 Dandenong Road, East Caulfield, Victoria 3 145, Australia,
1995.
H. Rombach. Design measurement: Some lessons learned. IEEE Transactions on Software Engineer-
ing, 7(3):17-25,1990.
B. Stroustrup. The C++ Programming Language. Addison-Wesley, third edition, 1997.
J. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading, Massachusetts, 1977.
N. Wirth. From programming language design to computer construction. Communications ofthe ACM,
28(2), Feb. 1985.
G. K. Zipf. Relative frequency as a determinant of phonetic change. Harvurd Studies in Classical
Philology, 40: 1-95, 1929.

20(6):263-265,1994.

