
Shakeins: Non-Intrusive Aspects
for Middleware Frameworks?

Tal Cohen?? and Joseph (Yossi) Gil? ? ?

{ctal, yogi }@cs.technion.ac.il
Department of Computer Science

Technion—Israel Institute of Technology
Technion City, Haifa 32000, Israel

Shaken, not stirred.

— Bond, James Bond (Goldfinger, 1964).

Abstract. Shakeinsare a novel programming construct which, like mixins and
generic classes, generates new classes from existing ones in a universal, uniform,
and automatic manner: From a given class, a shakein generates a new class which
has the same type as the original, but with different data and code implementation.
We argue that shakeins are restricted, yet less chaotic, aspects. We further claim
that shakeins are well suited for the introduction ofaspect-oriented programming
(AOP) into existing middleware applications. We introduce theASPECTJ2EE
language which, with the help of shakeins and a newdeploy-timeweaving mech-
anism, brings the blessings of AOP to the J2EE framework. A unique advantage
of ASPECTJ2EE, which is less general (and hence less complicated) thanAS-
PECTJ, is that it can be smoothly integrated into J2EE implementations without
breaking their architecture.

1 Introduction

1.1 Enterprise Applications

Enterprise applicationsare large-scale software programs used to operate and man-
age large organizations. These make the world’s largest, and arguably most important,
software systems, including the programs that run government organizations, banks, in-
surance companies, financial institutes, hospitals, etc. Enterprise applications make the
world go around!

It is often the case that enterprise applications run on heterogeneous platforms con-
necting various independent systems (calledtiers) into a coherent whole. The various
tiers of an enterprise application can include, e.g., legacy mainframe servers, dedicated
database servers, personal computers, departmental servers, and more.

? Part of the contents of this paper was presented in the European Conference on Object Oriented
Programming [1] and in a recently submitted paper [2].

?? Contact author
? ? ? Research supported in part by the IBM faculty award

2 Tal Cohen and Joseph (Yossi) Gil

The core functionality served by enterprise applications is often quite simple. It does
not involve overly elaborate computation or pose complex algorithmic demands. How-
ever, developing enterprise applications is considered a daunting task, due to orthogo-
nal requirements presented by most of these applications: uncompromising reliability
demands, unyielding security requirements, and complete trustworthiness that the ap-
plications must exhibit.

The staggering demand for rapid development of enterprise applications initiated
a series of component-basedmiddleware architectures, such as CORBAand DCOM.
A prime example of these, and emphasizing client/server and multi-tier structures, is
Java 2, Enterprise Edition(J2EE)1 which uses Enterprise JavaBeans (EJB)2 as its elab-
orate component model.

The immense complexity of middleware frameworks and enterprise applications
makes these an appealing target for mass application of aspect-oriented programming
(AOP) [3]. AOP is a methodology which can be used for encapsulating the code relevant
to any distinct non-functional concern inaspectmodules. (We assume basic familiarity
with standard AOP terminology, includingjoin point—a well-defined point in the pro-
gram’s execution,pointcut—a specification of a set of join points,advice—code that is
added at specified join points,weaving—the process of applying advices to join points,
andaspect—a language construct containing advices.)

AOP can also be thought of as answering the same demand [4, 5]. Indeed, the func-
tionality of J2EE application servers can beconceptuallydecomposed into distinct as-
pects such as persistence, transaction management, security, and load balancing. The
effectiveness of this decomposition is evident from Kim and Clarke’s case study [6],
which indicates that the EJB framework drastically reduces the need for generic AOP
language extensions and tools.

Yet, as we shall see below, the EJB support for functional decomposition is limited
and inflexible. In cases where the canned EJB solution is insufficient, applications resort
again to a tangled and highly scattered implementation of cross-cutting concerns. Part
of the reason is that current J2EE servers do not employ AOP in their implementation,
and do not enable developers to decompose new non-functional concerns that show up
during the development process.

1.2 J2EE Services as Managers of Non-Functional Concerns

A natural quest is for a harmonious integration of middleware architectures and AOP.
Indeed, there were several works on an AOP-based implementation of J2EE servers and
services (see e.g., the work of Choi [7]).

Ideally, with the J2EE framework (and to a lesser extent in other such frameworks),
the developer only has to implement the domain-specificbusiness logic. This “busi-
ness logic” is none other than what the AOP community callsfunctional concerns. The
framework takes charge of issues such as security, persistence, transaction manage-
ment, and load balancing which are handled byservicesprovided by theEJB container.
Again, these issues are none other thannon-functional concernsin AOP jargon.

1 http://java.sun.com/j2ee
2 http://java.sun.com/products/ejb/

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 3

Suppose for example that the programmer needs data objects whose state is mir-
rored in persistent storage. This storage must then be constantly updated as the object
is changed during its lifetime, and vice versa. Automatic updates can be carried out by
theContainer-Managed Persistence(CMP) service of the EJB container. To make this
happen, the objects should be defined asentity beans. Entity bean types are mapped
to tables in a relational database with an appropriate XML configuration file. Thisde-
ployment descriptorfile also maps each bean attribute (persistent instance variable) to
a field of the corresponding table.

Another standard J2EE service is security, using an approach known asrole-based
security. Consider, for example, a financial software system with two types of users:
clients and tellers. A client can perform operations on his own account; a teller can per-
form operations on any account, and create new accounts. By setting the relevant values
in the program’s deployment descriptor, we can limit the account-creation method so
that only users that were authenticated as tellers will be able to invoke it.

Other services provided by the EJB container handle issues such as transaction man-
agement and load balancing. The developer specifies which services are applied to
which EJB. Deployment descriptors are used for setup and customization of these ser-
vices. Thus, J2EE reduces the implementation of many non-functional concerns into
mere configuration decisions; in many ways, they turn intonon-concerns.

The prime example in this work are EJBs. But, the J2EE design guideline, according
to which the developer configures various services via deployment descriptors, is not
limited to EJBs; it is also used in other parts of the J2EE platform. For example, servlets
(server-side programs for web servers) also receive services such as security from their
container, and access to specific servlets can be limited using role-based security. This is
also true for Java Server Pages (JSPs), another key part of the J2EE architecture. Hence,
in our financial software example, certain privileged web pages can be configured so
that they will be only accessible to tellers and not to clients.

The various issues handled by EJB container services were always a favored target
for being implemented as aspects in AOP-based systems [8, pp. 13–14]. For example,
Soareset al.[4] implement distribution, persistence and transaction aspects for software
components usingASPECTJ [9]. Security was implemented as an aspect by Haoet
al. [5]. The use of aspects reduces the risk of scattered or tangled code when any of
these non-functional concerns is added to a software project.

Conversely, we find that J2EE developers, having the benefit of container services,
do not require as much AOP! Kim and Clarke’s case study [6] comprised of an e-voting
system which included five non-functional concerns: (1) persistent storage of votes,
(2) transactional vote updates, (3) secure database access, (4) user authentication, and
(5) secure communications using a public key infrastructure [6, Table 1]. Of these five
non-functional concerns,not oneremained cross-cutting or introduced tangled code.
The first three were handled by standard J2EE services, configured by setting the proper
values in the deployment descriptors. The last two were properly modularized into a
small number of classes (two classes in each case) with no code replication and no
tangled code.

This is hardly surprising. The J2EE platform designers have provided what, in their
experience, an enterprise application developerneedsfor his non-functional concerns.

4 Tal Cohen and Joseph (Yossi) Gil

This was done without relying on aspect-oriented research concepts; it was done in
order to scratch an itch. J2EE provides a robust solution to real-world problems en-
countered by real-world programmers when developing real-world multi-tier enterprise
applications.

1.3 Shakeins and Middleware

In summary, despite the complexity of middleware systems, and despite the similarity
between AOP and the services that frameworks such as J2EE provide, it is expected that
integrating this modern programming technique into the frameworks that need it, will
face reluctance. Some J2EE application server vendors, most noticeably JBoss,have
recently integrated support for aspects into their products. However, the forthcoming
version of the EJB standard (EJB 3.03) chose not to adopt a complete AOP solution,
but rather a rudimentary mechanism that can only be used to apply advice of a limited
kind to a limited set of methods in an inflexible manner. The basic services are not
implemented using such advise, but rather remain on a different plane, unreachable and
non-modifiable by the developer.

Plain aspects should make it easier toadd services to J2EE, if re-engineered to use
AOP. They should also make it simpler toreplaceexisting services with alternative im-
plementations. This paper makes the case that much more can be offered to the client
community byshakeins, a novel programming construct, combining features of aspects
with selected properties of generics and mixins [10]. Shakeins should make it possi-
ble not only toadd services, but also address two issues that current J2EE users face:
configurationof existing services andgreater flexibilityin their application. Shakeins
should also enjoy a smoother entrance into the domain because theyreusethe existing
J2EE architecture, and because they simplify some of the daunting tasks (e.g., lifecycle
methods, see Sec. 6) incurred in the process of developing EJBs.

In a nutshell, a shakein receives a class parameter and optional configuration parame-
ters, and generates a new class which has the same type as the original, but with differ-
ent data and code implementation. In a sense, shakeins are restricted, yet less chaotic,
aspects. Like aspects, they can be used to modularize non-functional concerns with-
out tangled and scattered code. Unlike traditional aspects, shakeins preserve the object
model, present better management of aspect scope, and exhibit a more understandable
and maintainable semantic model.

Shakeins are more restricted than aspects in that there are limits to the change they
can apply to code. However, unlike aspects, shakeins take configuration parameters,
which make it possible to tailor the change to the modified class.

We argue that the explicit, intentional, configurable and parameterized application of
shakeins to classes makes them very suitable to middleware frameworks and enterprise
applications, based of the following reasons:

– The architecture ofexistingmiddleware frameworks is such that in generating en-
terprise application from them, the system architect may selectively use any of the

3 http://www.jcp.org/en/jsr/detail?id=220

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 5

services that the framework provides. We have thata chief functionality of middle-
ware frameworks is in the precise management of non-functional concerns,and that
this objective is well served by the shakeins construct,

– The services that a middleware framework offers are applicable only to certain and
very distinguishable components of the application, e.g., EJBs in J2EE. The need
to isolate the application of aspects is aggravated by the fact enterprise applications
tend to use other software libraries, which should not be subjected to the framework
modifications. For example, a business mathematics library that an application uses
for amortizing loan payments, should not be affected by the underlying framework
security management. Shakeins are suited to this domain because of its fundamental
property by whichcross cutting concerns should not be allowed to cut through an
entire system.

– Further, for modularity’s sake, it is important that these parts of the enterprise ap-
plication, which are external to the middleware, are not allowed to interact with the
services offered by the middleware. The fact shakeins are forbidden from creating
new types helps inisolation of the cross cutting concerns.

– To an extent, shakeins generalize existing J2EE technology, presenting it in a more
systematic, programming language-theoretical fashion. While doing so, shakeins
make it possible to enhance J2EE services in directions that plain aspects fail to
penetrate: The configurability of shakeins makes it possible to generalize existing
J2EE services. Explicit order of application of shakeins to components adds another
dimension of expressive power to the framework. And by usingfactories(a new
language construct, detailed in the Appendix), such enhancements can be applied
with a minimal disturbance of existing code.

1.4 ASPECTJ2EE

Shakeins draw from the lessons of J2EE and its implementation. To demonstrate their
applicability to this domain, we introduce theASPECTJ2EE[1] language, which shows
how shakeins can be used to bring the blessings of AOP to the J2EE framework.
ASPECTJ2EEis geared towards the generalized implementation of J2EE application
servers and applications within this framework.

As the name suggests,ASPECTJ2EEborrows much of the syntax ofASPECTJ. The
semantics ofASPECTJ2EEis adopted from shakeins, while adapting these toASPECTJ.
The main syntactical differences are due to the fact that “aspects” inASPECTJ2EE
can be parameterized, as will be revealed by the forthcoming exposition. In the initial
implementation we have ofASPECTJ2EE, parameter passing and the application of
shakeins are not strictly part of the language. They are governed mostly by external
XML configuration files, a-la J2EE deployment descriptors.

A distinguishing advantage of this new language is that it can be smoothly integrated
into J2EE implementations without breaking their architecture. This is achieved by gen-
eralizing the existing process of binding services to user applications in the J2EE ap-
plication server into a noveldeploy-timemechanism of weaving aspects. Deploy-time
weaving is superior to traditional weaving mechanisms in that it preserves the object
model, has a better management of aspect scope, and presents a more understandable

6 Tal Cohen and Joseph (Yossi) Gil

and maintainable semantic model. Also, deploy time weaving stays away from special-
ized JVMs and bytecode manipulation for aspect-weaving.

Standing on the shoulders of the J2EE experience, we can argue that shakeins in gen-
eral, andASPECTJ2EEin particular, are suited to systematic development of enterprise
applications. Unlike existing attempts to add AOP functionality to J2EE application
servers, theASPECTJ2EEapproach is methodical. Rather than add aspects as an ad-
ditional layer, unrelated to the existing services, our approach is that even the standard
services should be implemented on top of the AOP groundwork. UsingASPECTJ2EE,
the fixed set of standard J2EE services is replaced by a library of core aspects. These
services can be augmented with new ones, such as logging and performance monitoring.

It should be noted thatASPECTJ2EEhas its limitations compared to more traditional
implementations of aspects; in particular, it is not at all suited to low-level debugging
or nit-picking logging. (For example, access tonon-privatefields by classes other than
the defining class is not a valid join point.) However, it is not for these tasks thatAS-
PECTJ2EEwas designed, and it is highly suited for dealing with large systems and
global aspect oriented programming. (The field access restriction example does not ma-
ture into a major hurdle in the kind systems we are interested in; field management can
be always be decomposed into getter and setter methods, and in factmustbe decom-
posed this way in J2EE applications, where fields are realized asattributeswith proper
join points at their retrieval and setting.)

Moreover, theASPECTJ2EElanguage has specific support for the composition of as-
pects that are scattered across program tiers (tier-cutting concerns), such as encryption,
data compression, and memoization. We stress that unlike previous implementations of
aspects within the standard object model,ASPECTJ2EEdoes not merely support “be-
fore” and “after” advices and “method execution” join points.ASPECTJ2EEsupports
“around” advices, and a rich set of join points, including control-flow based, condi-
tional, exception handling, and object- and class-initialization.

Historically, the developers of enterprise applications are slow to adopt new tech-
nologies; a technology has to prove itself again and again, over a long period of time,
before the maintainers of such large-scale applications will even consider adopting it
for their needs. It is not a coincidence that many large organizations still use and main-
tain software developed using some technologies, such asCOBOL , that other sectors of
the software industry view as thoroughly outdated. The huge investment in legacy code
slows the adoption of new technology.

We believe that the fact that shakeins preserve the standard object model, and rely
on existing J2EE technologies, should contribute to widespread adoption of this new
technology in the middleware software domain.

Outline. Sec. 2 explains in greater detail the shakeins programming construct while
comparing it to other such constructs. Sec. 3 makes the case for representing J2EE ser-
vices as aspects in general, and as shakeins in particular. In Sec. 4 we compare the
shakeins mechanism with two important products introducing aspects into J2EE. De-
ploy time weaving is discussed in Sec. 5, which also explains why this mechanism is
suited to shakeins. We then show in Sec. 6 how shakeins can be married with middle-
ware frameworks, by means theASPECTJ2EElanguage. Sec. 7 lists several possible

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 7

innovative uses forASPECTJ2EE, some of which can lead to substantial performance
benefits. Sec. 8 concludes.

2 The Case for Shakeins

As explained above, a shakeinS takes an existing classc as input, along with optional
configuration parameters, and generates from it a new classS 〈c〉, such that thetype
of S 〈c〉 is thesameas that ofc. Therealizationof this type inS 〈c〉 may, and usually
will, be different than inc. Further, the process of generatingS 〈c〉 from c is automatic,
universalanduniform.

This section makes the case for shakeins, and explains this process in greater de-
tail: Sec. 2.1 explains what we mean by making the distinction between the type de-
fined by a class and its realization by the class definition. With this distinction, we
explain in Sec. 2.2 why the mechanisms of aspects4 and inheritance serve similar pur-
poses but from different, foreign and hard-to-reconcile perspectives. Sec. 2.3 presents
the shakeins mechanism to resolve this schism.

Sec. 2.4 explains that shakeins, just like mixins, have an explicit parameter-based ap-
plication semantics, and discusses some of the benefits of this semantics. The theoretical
discussion of this new language mechanism is concluded in Sec. 2.5 which shows how
they simplify some of the subtle points of aspects.

2.1 The Five Facets of a Class

As early as 1971, Parnas [11] made the classical distinction between theinterfaceand
thematerializationperspectives of a software component. It is only natural to apply this
distinction to class definitions inJAVA and other mainstream object oriented languages.
In this section we do so, while taking into notice that, unlike the software components
of the seventies, classes are instantiable.

Accordingly, the interface of a class presents two facets: theforge of the class, be-
ing the set of non-private constructor signatures; and itstype, the set of externally-
accessible fields and methods as well as available cast operations. The materialization
of a class has three facets: theimplementation, i.e., the method bodies; themill, being
the implementation of the forge; and themold, which is the memory layout used for
creating objects.

Fig. 2.1 shows a sample class5 (a) alongside its forge (b), type (c) and mold (d).

2.2 The Aspects-Inheritance Schism

A key feature of OOP is the ability to define new classes based on existing ones. The
five facets described above can be used for explaining inheritance inJAVA and similar

4 We refer here toASPECTJ-style aspects. Most other aspect-oriented languages are variants of
this same style.

5 A similarly structured class served as the running example in Kiczales and Mezini’s [12] work
on modularity and aspects.

8 Tal Cohen and Joseph (Yossi) Gil

Fig. 2.1ThePoint class definition and the ensuing forge, type and mold.
class Point implements Shape {

int x, y;
public Point(int x, int y){

this .x = x;
this .y = y;

}
public Point(){

this (0,0);
}
public Point(Point other){

this .x = other.x;
this .y = other.y;

}
public int getX() {

return x;
}
public int getY() {

return y;
}
public void setX(int x) {

this .x = x;
}
public void setY(int y) {

this .y = y;
}
public void moveBy(int dx, int dy) {

x += dx; y += dy;
}

}

(a) The class definition.

public Point(int x, int y);
public Point();
public Point(Point other);

(b) The forge.
int x, y;
public int getX(); public int getY();
public void setX(int);
public void setY(int);
// From Shape:
public void moveBy(int , int);
// From java.lang.Object:
public boolean equals(Object);
public int hashCode();
// ... etc.
// Upcast operations:
public (Shape)(); public (Object)();

(c) The resulting type.
int x 32 bits

int y 32 bits

Fields inherited fromObject

Hidden fields added by the JVM

(d) The class’s mold.

languages: Inheritanceextendsthe type, mold and implementation of a class. By means
of overriding, inheritance also makes it possible toreplaceor refineparts or all of the
implementation. The mold, however, cannot be refined.

Interestingly, inheritance in mainstream programming languagesrecreatesthe forge
from scratch, since constructor signatures are not inherited. Therefore, inheritance is
allowed to make arbitrary and incompatible changes to the forge facet of a class. The
mill however can only be refined, since constructors must invoke inherited versions.

Examining the notion of aspects from the perspective of modifications to the five
facets, we see that they offer a similar repertoire of modifications. Aspects are adver-
tised as means for breaking the implementation into its orthogonal concerns; accord-
ingly, an aspect may replace or refine the implementation. In many languages, aspects
can alsoextendthe type and the mold by introducing new members into a class. (This is
known asmember introductionin ASPECTJ. Conceptually, fields in an aspect that has
per-object instantiation may also be viewed as fields added to the base object’s mold.)

Still, unlike inheritance, the application of an aspect does not define a new type, nor
does it introduce a new mold or a new implementation; it changes the mold and the
implementation of existing classesin situ.6 And, while member introduction makes it
possible to modify the type of classes, it does not introduce anewtype—because classes
touched by aspects cease to exist in their original form; only the modified form exists.
In particular, there cannot be instances of the original class in memory.

The similarity of aspects and inheritance raises intriguing questions pertaining to the
interaction between the two mechanisms: Does the aspectualized class inherit from its

6 Also, aspects can onlyextendthe forge (using member introduction) but not replace it.

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 9

base version? May aspects delete fields from the mold, or modify it by changing the
type of fields? Likewise, can methods be removed from the type? Can their signature
be changed? How does the application of an aspect to a class affect its subclasses?

The interaction of join points with inheritance raises still more questions.7 Suppose
that classB inherits fromA, with, or without overriding methodm() . Then, does the
pointcutcall (A.m()) apply to an invocation of methodm() on an object whose dy-
namic type isB? Conversely, does the pointcutcall (B.m()) ever apply if classB does
not define a methodm() , but inherits it fromA?

The reason that all these questions pop up is that aspects were not designed with
inheritance in mind. The original description of aspects [3] did not dedicate this new
construct to OOP languages. Similarly, the founding fathers of OOP did not foresee the
advent of AOP, and in many occasions inheritance was used for some of the purposes
AOP tries to serve. We witness what may be calledThe Aspects-Inheritance Schism.

Gradecki and Lesiecki [13, p. 220] speculate that“mainstream aspect-oriented lan-
guages . . . will possess simpler hierarchies with more type-based behavior defined in
terms of shallow, crosscutting interfaces.”In other words, these two authors expect that
this schism is resolved by programmers abandoning much of the benefits of inheritance.
Our suggestion is that the resolution will be a re-definition of aspects cognizant of the
class facets and of inheritance.

2.3 Shakeins as Class Re-implementors

The shakeins construct is a proposal to resolve the aspect-inheritance schism by making
aspects which are a restricted form of inheritance. Like inheritance, shakeins generate
a new class from an existing one. Yet unlike inheritance, they cannot extend the class
type. In fact, they cannot change the base class type at all.

Thus, we can say thatshakeins make are-implementationof a class.
Shakeins allow only specific changes to the class facets. Programming constructs

which restrict one or more facets are not strange to the community: anabstract classis
a type, a partial (possibly empty) implementation, and an incomplete mold.Interfaces
are pure types, with no implementation, forge, mill or mold. Also,traits [14] have a
fragment of a type and its implementation, but no forge, mill or mold.

Another familiar notion on which shakein rely is that of multiple implementations of
the same (abstract) type, as manifested e.g., in the distinction between signatures and
structures inML . The major difference is, however, that a shakein assumes an existing
implementation of a class, which is then modified by the shakein.

For concreteness, Fig. 2.3(a) shows a shakeinDisplayUpdating that can be used
to modify classPoint , so that the display is refreshed after each coordinate change.
The shakein works on any class that defines methodssetX(int) , setX(int) , and/or
moveBy(int , int) . The desired effect is obtained by applying this shakein toPoint .

7 In ASPECTJ, two different join point types can be used to apply an advice to method execution:
Theexecution join point places an advice at the method itself, whereascall places the
advice in at the method’s client, i.e., at the point of invocation rather than at its target.

10 Tal Cohen and Joseph (Yossi) Gil

Fig. 2.2Two shakeins that can be applied to thePoint class.
shakein DisplayUpdating {

pointcut change() :
execution (setX(int)) ||
execution (setY(int)) ||
execution (moveBy(int , int));

after () returning : change() {
Display.update();

}
}

(a) A shakein adding display refresh op-
erations.

shakein Confined {
pointcut update(int v) :

(set (int x) || set (int y))
&& args (int v);

before (int v): update(v) {
if (v < 0)

throw new IllegalArgumentException();
}

}

(b) A shakein for limiting the valid range of
Point ’s coordinates.

Fig. 2.3(b) shows theConfined shakein. This shakein confines the range of valid
values forx andy to positive integers only. It is applicable to classPoint , or any class
with int fieldsx andy .8

In the process of re-implementing a class, a shakein may introduce methods and fields
to the class. Such members must beprivate , accessible to the shakein but not to
the external world (including inheriting classes, and classes in the same package). The
reason is that such accessibility would have implied a change to the class type, which
is not allowed to shakeins. Shakeins are allowed to introduceconcealed members,
which are accessible to further re-implementations of this re-implementation.

We will write Confined<Point> to denote the application of shakeinConfined to
Point , andDisplayUpdating<Confined<Point>> for the application of shakein
DisplayUpdating to the result, etc.

The re-implementation property implies that although a classS 〈c〉 can (and usually
will) be instantiated, it is not possible to definevariablesof this class. Instances ofS 〈c〉
can be freely stored in variables of typec, as in the followingJAVA like pseudo-code:

c var = new S 〈c〉() ;
In thePoint example, we may then write

Point p = new DisplayUpdating<Point>();

The type preservation property of shakeins sets a clear semantics for the interaction
of these with inheritance. As it turns out, the application of shakeins does not modify or
break the inheritance structure. More formally, letc1 andc2 be two classes, and suppose
thatc2 inherits fromc1. Then, we can writec2 ≺ c1 to denote the fact that the type ofc2

is a subtype ofc1. Let S be a shakein. Then, we can also writec1 ' S 〈c1〉 to denote
the fact that the type ofS 〈c1〉 is the same asc1. Similarly,c2 ' S 〈c2〉. By substitution,
we can obtainS 〈c2〉 ≺ S 〈c1〉, c2 ≺ S 〈c1〉, andS 〈c2〉 ≺ c1. In fact, we have

Proposition 1. For all classesc1 andc2 such thatc2 ≺ c1, and arbitrary shakeinsS
andS′, S′ 〈c2〉 ≺ S 〈c1〉.

In our running example, shakeinDisplayUpdating can be applied to any subclass
of Point . If classColorPoint extendsPoint , then the type ofDisplayUpdating

<ColorPoint > is a subtype ofPoint .
Fig. 2.3 makes a graphical illustration of Prop. 1. It depicts a simple base class hierar-

chy consisting of classesc1, c2, c3, andc4, wherec4 ≺ c2 ≺ c1, andc3 ≺ c1. There are
also three shakeins,Sa, Sb andSc, where shakeinsSb andSc are implemented usingSa,
and each of the shakeins is applied to each of the classes.

8 While the update presented by this shakein can cause methods that updatex andy to throw an
exception, it is an unchecked exception, and therefore it does not alter the methods’ signature.

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 11

We see in the figure that for alli = 1, . . . , 4, the type of classci is the same as its
three re-implementationsSa 〈ci〉, Sb 〈ci〉 andSc 〈ci〉. This common type is denoted by
a round-cornered box labeled “Typeci”. As shown in the figure, the subtyping relation-
ship is not changed by re-implementations; e.g., the type of classSa 〈c4〉 is a subtype
of Sb 〈c2〉’s type.

The figure should also make

��

�
�

�
�

��

�
�
����

�	����

�
�
����

�	����

�
�
����

�

����

�

����

�

�����

����

�

����

Type C�

Type C� Type C

Type C�

�

����

�	�����	����

�
�
�����
�
����

Figure 2.3.A class hierarchy subjected to shakeins.

it clear how the type system of
shakeins can be embedded in
a standard JVM. Each shakein
application results in generation
of a JAVA class, which com-
piles into a distinct.class
file. Both vertical dashed ar-
rows, representing type inher-
itance, and horizontal arrows,
representing shakein applica-
tion, are translated to class in-
heritance, i.e., anextends re-
lationship between classes.

To see why Prop. 1 holds in this embedding, recall that the program does not have
any variables (including parameters and fields) of the shakein classes: All instances of
classS 〈c〉 are stored in variables of typec. In the figure, instances of typeSa 〈c4〉 are
stored in variables of typec4, which is upcastable to typec2.

2.4 Parameterized Class Modification

Aspects are distinguished from inheritance in that they can be automatically applied to
multiple classes. In contrast, a subclass is defined with respect to a specific superclass;
the nature of the extension (both of the interface and the materialization) is specific to
every such instance. To apply the same kind of change to multiple base classes, the de-
tails of the change must be explicitly spelled out each time. Thus, although inheritance
is a kind of what is known in the literature asuniversal polymorphism[15], it is not a
uniformmechanism; each inheriting class modifies the base class in anad-hocmanner.

It is therefore instructive to compare aspects to the parameterized version of inheri-
tance, i.e.,mixins[10]. A mixin, just like an aspect, makes it possible to apply the same
kind of change (expressed in terms of inheritance) to multiple base classes.

Mixins were invented with the observation that there is a recurring need to extend
several different classes in the exact same manner. They allow programmers to carry
out such a change without rewriting it in each inheriting class. In languages such as
MODULA-π [16] the repeating change to the base class can be captured in a mixinM ,
which, given a classc, generates a classM 〈c〉 such thatM 〈c〉 inherits fromc. In
languages with first-class genericity, mixins can be emulated by writing e.g.,

template <typename c> class M: public c { ... }

in C++, orclass M<c> extends c in NEXTGEN [17].

12 Tal Cohen and Joseph (Yossi) Gil

Generic structures are also a kind of a universal polymorphism, but their application
is uniform. The above emulation of mixins by generics makes it clear that mixins are
bothuniversalanduniformkind of polymorphism.

Here, we enrich and simplify the aspects approach with ideas drawn from the work
on mixins. We argue that the seemingly pedestrian notation of mixins,M 〈c〉, hides
much expressive power. The reason is that parameter passing, a familiar mechanism
of programming languages, exhibits several useful features which are missing in the
current implicit and declarative mechanism of aspect application. These features are:
1. Selective Application.After a mixin was defined, it can be applied to selected classes

without affecting others.
2. Non-destructive Application.The application of a mixinM to a classc does not

destroyc, and both classesM 〈c〉 andc can be used. Instances of both may reside in
memory simultaneously and even interact with each other.

3. Explicit and Flexible Ordering.Mixins M1 andM2 can be applied in any order, to
generate eitherM1 〈M2 〈c〉〉, M2 〈M1 〈c〉〉, or both. Further, it is possible to apply
the same mixins in a different orders to different class.

4. Composition.Mixins can be conveniently thought of as functions, and as such it
makes sense to compose them. In some languages supporting mixins one can define
a new mixin by writing e.g.,M := M1◦M2, with the obvious and natural semantics.

5. Configuration Parameters.It is straightforward to generalize mixins so that
they take additional parameters which control and configure the way they ex-
tend the base class. In the templates notation, one can write for example:

template <typename c, char *log_file_name>
class Log: public c {

// Log into file logfile name
}

6. Repeated Application.One can writeM 〈M 〈c〉〉, but it is not possible to apply the
same aspect twice to a class. This works well with parameterizes mixins; e.g.,

Log["post.log"]<Security<Log["pre.log"]<c>>>

will generate two log files, one before and one after any security checks imposed by
theSecurity mixin.

7. Parameter Checking.It is useful to declare constraints to the parameters of mix-
ins, and apply (meta-) type checking in passing actuals to these. Languages such as
JAM [18] offer this feature in mixins.

None of these features is available inASPECTJ-style aspects, where aspect appli-
cation is global and destructive, its order globally set and not customizable per target
class, aspects cannot be composed and take no class-specific configuration parameters,
repeated application is impossible, and there is no parameter checking mechanism (e.g.,
it is not possible to ensure that aspects are applied only to specific kinds of classes, ex-
cept in a very narrow sense).

Evidently, these differences are not a coincidence. AOP languages were designed
with the belief that the composition of a system from its aspects is an implicit process,
carried out by some clever engine which should address the nitty gritty details. One of
the chief claims of this paper is that this presumption does not carry to middleware ap-
plications, especially when we wish to preserve the investment in existing architecture.
Complex systems are composed of many different components in many different ways.
An automatic composition engine tends to make arbitrary decisions, whose combined

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 13

effect is more likely to break larger systems. Our support for this claim is by the detailed
description of the aspect oriented re-structuring of J2EE.

Shakeins are similar to mixins in that they take parameters. As such they are auniver-
sal anduniform polymorphic programming construct. Shakeins are similar to generic
structures in that they may take multiple parameters. However, whereas both mixins and
generics suffer from theirobliviousandinflexiblemode of operation, i.e., they are un-
able to inspect the details of the definition of the base-, or argument- class, and generate
specific code accordingly. As a result, mixins fail in tasks such as re-generating con-
structors with the same signature as the base, or applying the same change to multiple
methods in the base class. Similar restrictions apply to generics. In contrast, shakeins
use the same pointcut mechanism as aspects, and are therefore highly adaptable9.

The component-system Jiazzi [19] uses a mixin-like mechanism to implementopen
classes, which in turn can be used for implementing cross-cutting concerns [20]. Ji-
azzi components are also parameterized, taking packages (sets of classes) as arguments.
However, Jiazzi’s open class approach differs from shakeins in that the base class is
modified, both in its implementation and in its type; and such changes are propagated
to all existing subclasses.

The chief parameter of a shakein is the class that this shakein re-implements. The def-
inition of a shakein does not need to name or even mention this parameter, since it is im-
plicit to all shakeins, in the same way thatJAVA methods have athis parameter. Addi-
tional parameters, if they exist, are used to configure or direct the re-implementation10.

More formally, a shakeinS takes an existing classc as input along with
other configuration parameters,P1, . . . ,Pn, n ≥ 0, and generates from it a new
classS[P1, . . . ,Pn] 〈c〉, such that thetypeof S[P1, . . . ,Pn] 〈c〉 is thesameas that ofc.

Fig. 2.4(a) shows how configuration parameters can enhance the functionality of
shakeinConfined (first shown in Fig. 2.3(b)). As shown in the figure, the updated
version ofConfined is configured by fourint parameters, specifying the minimal
and maximal values for thex andy coordinates of its target class. To obtain an instance
of Point restricted to the[0, 1023]× [0, 767] rectangle, one can write
Point p = Confined[0,1023,0,767]<Point>(511,383); //Initially at center.

Another kind of configuration parameter is a pointcut expression. Fig. 2.4(b) shows
a revised version ofDisplayUpdating , which uses a pointcut parameter. The param-
eterchange denotes the join points whose execution necessitates a display update. An
actual value ofchange specifies a concrete such set. For example, the following:

DisplayUpdating[
execution (setX(int)) || execution (setY(int)) || execution (moveBy(int , int)

]<Point>

is an application ofDisplayUpdating to classPoint .
Consider now Fig. 2.5, showing classLine implemented using twoPoint s. An ap-

plication ofDisplayUpdating to Line is by writing
DisplayUpdating[execution (moveBy(int , int))]<Line> .

9 Another issue that plagues mixins (and generics that inherit from their argument) is that of
accidental overloading[18]. Shakeins overcome this problem using an automatic renaming
mechanism, which is possible since no shakein-introduced member is publicly accessible.

10 Note that aspects can also be thought of as taking implicit parameters. However, shakeins
are distinguished from aspects in that their invocation isexplicit, and that aspects take no
configuration parameters.

14 Tal Cohen and Joseph (Yossi) Gil

Fig. 2.4Parameterized shakeins.
shakein Confined[int minX, int maxX,

int minY, int maxY] {
pointcut updateX(int v) :

set (int x) && args (int v);
pointcut updateY(int v) :

set (int y) && args (int v);

before (int v): updateX(v) {
if ((v < minX) || (v > maxX))

throw new IllegalArgumentException();
}

before (int v): updateY(v) {
if ((v < minY) || (v > maxY))

throw new IllegalArgumentException();
}

}

(a) A parameterized version ofConfined .

shakein DisplayUpdating
[pointcut change()] {

after () returning : change() {
Display.update();

}

}

(b) A parameterized version of
DisplayUpdating .

Fig. 2.5ClassLine .
class Line {

private Point a, b;

public Line(Point from, Point to) {
a = new Point(from);
b = new Point(to);

}

// cont.

public moveBy(int x, int y) {
a.moveBy(x,y);
b.moveBy(x,y);

}
}

This re-implementation ofLine does not suffer from the redundant display updates
problem [12], which would have occurred in traditional AOP, i.e., display updates oc-
curring both in the implementationLine and its encapsulatedPoint s. Thanks to the
non-destructive semantics of shakeins, these twoPoint s can be of the non-updating
variant. This does not prohibit otherPoint s in the system (which are not part ofLine s)
to be display-updating.

In contrast, an aspect based solution should check that nochange advice is in effect
before executing this advice. This checking must be carried outat runtime, by examin-
ing the runtime stack with what is known inASPECTJ as acflowbelow condition11.

Fig. 2.6 is a re-definition of theConfined shakein using pointcut parameters.
Comparing the figure with Fig. 2.4(a), we see that this implementation usesshakein

Fig. 2.6A third version ofConfined , using a composition ofConfinedUpdate .
// Auxiliary shakein, used to confine updates to one axis:
shakein ConfinedUpdate[pointcut setValue(int v), int min, int max] {

before (int v): setValue(v) {
if ((v < min) || (v > max)) throw new IllegalArgumentException();

}
}

// Compose the auxiliary shakein twice, once per axis:
shakein Confined[int minX, int maxX, int minY, int maxY] :=

ConfinedUpdate[set (int x) && args (int v), minX, maxX] ◦
ConfinedUpdate[set (int y) && args (int v), minY, maxY];

11 Still, cflowbelow -based pointcuts can be used in shakeins where needed—for example, to
prevent a call toPoint.moveBy() from causing multiple display updates as it changes both
point coordinate; see [12] for a discussion of this use ofcflowbelow .

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 15

composition. In fact, we have here arepeated applicationof the auxiliary shakein
ConfinedUpdate , first for theY -axis, and then, on the result for theY -axis.

In one sentence summary of this section, we may refine the description of shakeins
from Sec. 2.3:Shakeins make aconfigurable re-implementationof aclass parameter.

2.5 A New Light on Aspect Terminology

By viewing shakeins are operators, taking classes as arguments and producing classes,
we can clarify some of the illusive notions and terms used in traditional AOP jargon:

1. Aspect Instantiation.The semantics of instantiation of aspects, i.e., the reification of
aspects at runtime, can be quite confusing;ASPECTJhas are as many as five different
modes of such instantiations.
In contrast, shakeins, just like mixins and generics, operate on code, and as such,
they no longer exist at runtime. (Of course, the result of a shakein is a class which
may have runtime instances.)

2. Aspect Precedence.AOP languages make it possible to define global precedence
rules for aspects. However, this declaration is never complete unless all participating
aspects are known; and there is no possibility of applying a set of aspects to different
classes in a different order.
As operators, shakeins can easily be applied in a specific order as the need arises.

3. Abstract Pointcut.An abstract pointcutis a named pointcut with no concrete spec-
ification. An abstract aspectmay include an abstract pointcut and apply advice to
it. A concreteversion of this aspect may be generated by defining a “sub-aspect”
for it, which must provide a concrete value to the abstract pointcut. This mechanism
provides a measure of flexibility; yet the terms are confusing when used in conjunc-
tion with OOP. An abstract pointcut does not offer dynamic binding to the concrete
version, nor does it offer a signature that must be obeyed by all its implementors.
Standing at the shakein point of view, abstract pointcuts are nothing more than a
poor man’s replacement for a pointcut parameters.

4. Abstract Aspects.An aspect is abstract not only when it contains abstract point-
cuts, but also when it contains abstract methods. These methods can then be invoked
from advice, effectively using theTEMPLATE METHOD [21] design pattern. Using
concrete sub-aspects that implement these methods, the programmer may define a
different aspect each time.
A shakein may also define a method as abstract. Such a definition overrides the
method definition in the shakein parameter. An application of such a shakein yields
an abstract class, which can then be extended by other shakeins and provided with
a concrete implementation for the missing methods. However, unlike in the case
of abstract aspects, the implementation of the abstract methods in a shakein can
optionally be different for each application of the shakein.

5. Aspect Inheritance.Except in the case of abstract super-aspects, the notion of aspect
inheritance is ill-defined, and most aspect languages (includingASPECTJ) prohibit
this—because a sub-aspect will clearly share the same pointcut definitions as its
parent, and the same advice; does this imply that each advice should therefore be
appliedtwiceto each matching join point?

16 Tal Cohen and Joseph (Yossi) Gil

As shakeins are operators, shakein inheritance is nothing more than operator com-
position, as inshakein S3<c> = S2<S1<c>> .

It is therefore evident that while sharing the flexibility and expressive power of as-
pects, shakeins, by virtue of being parameterized operators on code, reconcile naturally
with the concept of inheritance. They do not exhibit the confusing notions that accom-
pany aspects, and their behavior is easy to understand within the domain of aspect-
oriented programming.

3 The Case for AOP in J2EE

Having presented the advantages of shakeins, the time has come for evaluating their
usefulness. To do so, we would like to go beyond the small examples presented above.
The more thorough examination is in the context of a real life application, and in par-
ticular, with respect to the J2EE implementation.

In this section, we examine first some of the existing limitations of the service based
architecture of J2EE (Sec. 3.1), and then proceed (Sec. 3.2) to explain how the marriage
of AOP with J2EE is better served with shakeins, which also help in addressing these
limitations.

3.1 Limitations of the Services-Based Solution

Even though the J2EE framework reduces the developer’s need for AOP tools, there are
limits to such benefits. The reason is that although the EJB container is configurable,
it is neither extensible nor programmable. Pichler, Ostermann, and Mezini [22] refer to
the combination of these two problems aslack of tailorability.

The container isnot extensiblein the sense that the set of services it offers is fixed.
Kim and Clarke [6] explain why supporting logging in the framework would require
scattered and tangled code. In general, J2EE lacks support for introducing new services
for non-functional concerns which are not part of its specification. Among these con-
cerns, we mention memoization, precondition testing, and profiling.

The container isnot programmablein the sense that the implementation of each of its
services cannot be easily modified by the application developer. For example, current
implementations of CMP rely on a rigid model for mapping data objects to a relational
database. The service is then useless in the case that data attributes of an object are
drawn from several tables. Nor can it be used to define read-only beans that are mapped
to a database view, rather than a table. The CMP service is also of no use when the
persistent data is not stored in a relational database (e.g., when flat XML files are used).

Any variation on the functionality of CMP is therefore byre-implementationof object
persistence, using what is calledBean-Managed Persistence(BMP). BMP support re-
quires introducing callback methods (calledlifecycle methodsin EJB parlance) in each
bean. MethodejbLoad() (ejbStore()), for example, is invoked whenever memory
(store) should be updated.

The implication is that the pure business logic of EJB classes is contaminated with
unrelated I/O code. For example, the tutorial code of Bodoffet al.[23, Chap. 5] demon-
strates a mixup in the same bean of SQL queries and aJAVA implementation of func-

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 17

tional concern. Conversely, we find that the code in charge of persistence isscattered
across all entity bean classes, rather than being encapsulated in one cohesive module.

Worse, BMP may lead to codetangling. Suppose for example that persistence is
optimized by introducing a “dirty” flag for the object’s state. Then, each business logic
method which modifies state is tangled with code to update this flag.

Similar scattering and tangling issues rise with modifications to any other J2EE ser-
vice. In our financial software example, a security policy may restrict a client to transfer
funds only out of his own accounts. The funds-transfer method, which is accessible for
both clients and tellers, acts differently depending on user authentication. Such a policy
cannot be done by setting configuration options, and the method code must explicitly
refer to the non-functional concern of security.

To summarize, whenever the canned solutions provided by the J2EE platform are
insufficient for our particular purpose, we find ourselves facing again the problems
of scattered, tangled and cross-cutting implementation of non-functional concerns. As
Duclos, Estublier and Morat [24] state: “clearly, the ‘component’ technology introduced
successfully by EJB for managing non-functional aspects reaches its limits”.

3.2 Marrying J2EE with AOP

Despite the limitations, the J2EE framework enjoys extensive market penetration, com-
manding a multi-billion dollar market12. In contrast, AOP is only making its first steps
into industry acceptance. It is natural to seek a reconciliation of the two approaches, in
producing an aspect based, programmable and extensible middleware framework.

Release 4.0 of JBoss (discussed below in Sec. 4.1) is an open-source application
server which implements the J2EE standard, and supports aspects with no language
extensions13. Aspects are implemented in JBoss asJAVA classes which implement a
designated interface, while pointcuts are defined in an XML syntax. However, JBoss
does not implement J2EE services aspects.

We argue that a proper marriage of AOP and J2EE requires that each of J2EE’s core
services is expressed as an aspect. The collection of these services then forms thecore
aspect library, which relying on J2EE success, would not only be provably useful, but
also highly customizable. Developers should be able to add their own services (e.g.,
logging) or modify existing ones, possibly using inheritance in order to re-use proven
aspect code. The resulting aspects could then be viewed as stand-alone modules that
can be re-used across projects.

Another implication is that not all aspects must come from a single vendor; in the
current J2EE market, all J2EE-standard services are provided by the J2EE application
server vendor. If developers can choose which aspects to apply, regardless of the appli-
cation server used, then aspects implemented by different vendors (or by the developers
themselves) can all be used in the same project.

Choi [7] was the first to demonstrate that an EJB container can be built from the
ground up using AOP methodologies, while replacing services with aspects which exist
independently of the container.

12 http://www.serverwatch.com/news/article.php/1399361
13 http://www.onjava.com/lpt/a/3878

18 Tal Cohen and Joseph (Yossi) Gil

Focal to all this prior work was the attempt to make an existing widespread frame-
work more robust using AOP techniques. Our work here adopts a new approach to the
successful marriage of J2EE and AOP, by using the notion of shakeins. More concretely,
we propose a new AOP languageASPECTJ2EE, which in using shakeins, draws from
the lessons of J2EE and its programming techniques.

The main issues in which theASPECTJ2EElanguage differs fromASPECTJ are:
1. Aspect targets.ASPECTJ can apply aspects to any class, whereas inASPECTJ2EE

aspects can be applied toenterprise beansonly, i.e., those modules to which J2EE
services are applied. (This selective application is made possible by the shakein se-
mantics, which always have a designated target.)
As demonstrated by the vast experience accumulated in J2EE, aspects have great
efficacy precisely with these classes. We believe that the acceptance of aspects by
the community may be improved by narrowing their domain of applicability, which
should also benefit understandability and maintainability.
It should be stressed, however, that this is not a limitation of the shakein concept but
rather anASPECTJ2EEdesign decision.

2. Weaving method.Weaving the base class together with its aspects inASPECTJ2EE
relies on the same mechanisms employed by J2EE application servers to combine
services with the business logic of beans. This is carried out entirely within the do-
minion of object oriented programming, using the standardJAVA language, and an
unmodified JVM. Again, this is made possible by the shakein semantics.
In contrast, different versions ofASPECTJ used different weaving methods rely-
ing on preprocessing, specialized JVMs, and dedicated byte code generators, all of
which deviate from the standard object model.

3. Aspect parametrization.Since the aspects inASPECTJ2EEare shakeins, they take
three kinds of parameters: pointcut definitions, types and literal values. Parameter-
ized aspects can be applied to EJBs by providing (in the EJBs deployment descriptor)
a concrete value for each parameter, including concrete pointcut definitions. Point-
cut parameters provide significant flexibility by removing undesired cohesion be-
tween aspects and their target beans, and enables the development of highly reusable
aspects. It creates, inASPECTJ2EE, the equivalent of Caesar’s [25] much-touted
separation between aspect implementation and aspect binding.
Other aspect parameter types also greatly increase aspect reusability and broaden
each aspect’s applicability.

4. Support for tier-cutting concerns.ASPECTJ2EEis uniquely positioned to enable
the localization of concerns that cross not only program modules, but program tiers
as well. Such concerns include, for example, encrypting or compressing the flow
of information between the client and the server. Even with AOP, the handling of
tier-cutting concerns requires scattering code across at least two distinct program
modules. We show that usingASPECTJ2EE, many tier-cutting concerns can be lo-
calized into a single, coherent program module.

J2EE application servers offer the developer only minimal control over the generation
of support classes.ASPECTJ2EEhowever, gives a full AOP semantics to the deploy-
ment process. With deploy-time weaving, described next, the main code is unmodified,
both at the source and the binary level. Further, the execution of this code is unchanged,
and can be carried out on any standard JVM.

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 19

ASPECTJ2EEdoes not impose constraints on the base code, other than some of the
dictations of the J2EE specification on what programmers must, and must not, do while
defining EJBs. These dictations are that instances must be obtained via the Home inter-
face, rather than by directly invoking a constructor or any other user-defined method;
business methods must not befinal or static ; and so forth.

4 Comparison with JBoss and Spring

Obviously, we were not the first to observe the case for using aspects in middleware ap-
plications in general, and in J2EE in particular. Indeed, there is a large body of previous
work in which aspects are applied in the middleware domain: JAC [26], Lasagna [27],
PROSE [28], JAsCo [29], and others.

Shakeins were designed with J2EE in mind—so in this section we compare shakeins
with the two prime applications of AOP technology to J2EE. Sec. 4.1 compares shakeins
with the dynamic aspects ofJBoss Application Server14. A comparison with the AOP
features of theSpring Application Framework15 is the subject of Sec. 4.2. Unlike
shakeins and other similar research, JBoss and Spring are industrial-strength software
artifacts employed in production code. The lessons that these two teach are therefore
valuable in appreciating the merits of shakeins.

4.1 JBoss AOP

Version 4.0 of JBoss was the first implementation of J2EE to integrate AOP support.
For technical reasons, theJBoss AOPapproach features advice- rather than aspect-level
granularity, where each advice is encapsulated in what is called aninterceptorclass.

It is telling that JBoss AOP enhancements of the aspect notion are similar to these
of shakeins, including: advice composition (stacksin the JBoss jargon), parameterized
advice, selective and repeated application of advice, explicit and flexible (rather than
global) ordering, and configuration parameters. We interpret this as a supporting empir-
ical support to the claim that flat-oblivious aspects should be extended in certain ways.

Still, since the application of (standard) advice in JBoss is carried out in situ, destroy-
ing the original class, the JBoss approach suffers from the aspect/inheritance schism,
instantiation complexity, etc. Perhaps in recognition of these difficulties, JBoss AOP
also supportsdynamic AOP—the ability to apply advice per instance rather than per
class. A class must be “prepared” for such a dynamic application, by injecting into its
code (at load time) hooks for the potential join points. The class loader consults an
XML configuration file for the list of classes to prepare, and the hook locations. It is
then possible, at run time, to add or remove interceptors.

In this extent, JBoss’s flexibility and repertoire of features is greater than that of
shakeins. JBoss offers the ability toun-applyan advice at runtime. This feature is miss-
ing in shakeins, but can be emulated by testing an on/off flag at the beginning of every
advice. Conversely, note that JBoss’s flexibility has its inherent limits; e.g., since inter-
ceptors are applied to existing objects, advice cannot be applied to constructors.

14 http://www.jboss.org
15 http://www.springframework.org

20 Tal Cohen and Joseph (Yossi) Gil

The most major difference between JBoss AOP and shakeins is the approach taken
for integration with the base technology. As explained in Sec. 2, shakeins are a language
extension, which draws from principles of OO and genericity. In contrast, the variety
of features in JBoss AOP is realized by a sophisticated combination of loaders, runtime
libraries, and XML configuration files, and without any changes to the compiler (or the
JVM). Thus, (probably in answer to Sun’s J2EE certification requirements) JBoss AOP
is an implementation of aspects through a software framework built over vanillaJAVA .16

Since JBoss aspects are not part of the language, a programmer who wishes to exploit
aspect features is asked to master a variety of tools, while following the strict discipline
dictated by the framework, with little if any compiler checking. For example, the run-
time application of advice is achieved using aJAVA API; the compiler is unaware of
the involved AOP semantics. As a result, many mistakes (e.g., an attempt to access an
invalid method argument), can only be detected at runtime, possibly leading to runtime
errors. Other problems, such as a mistyped pointcut (which matches no join points) will
not be detected at all. Thus, in a sense, the offers of JBoss can be compared to assem-
bly programming: immense flexibility but with greater risks. However, unlike assembly
code, performance in JBoss is not at its peak.

The clockwork driving the JBoss framework is visible to the programmer. The pro-
grammermustunderstand this mechanism in order to be able use it. This visibility
has its advantages: the illusive issue of aspect instantiation inASPECTJ is clarified by
JBoss: since interceptors must be instantiated explicitly prior to their application, the
semantics of aspect instance management is left up to the programmer.

To illustrate some of the issues of a framework based implementation of aspects,
consider Fig. 4.1, which demonstrates how theConfined shakein (Fig. 2.6) is imple-
mented in JBoss. Fig. 4.1(a) depicts aJAVA class which, by obeying the framework
rules, can be used as an interceptor. The runtime content of argumentinv to method

Fig. 4.1(a) Confined as a JBoss interceptor, and(b) the supporting configuration file.

(a)

1public class Confined implements Interceptor {
2 private int min, max;
3 private String fieldName;

5 public Confined(String fieldName, int min, int max) {
6 this .min = min; this .max = max;
7 this .fieldName = fieldName;
8 }

10 public String getName() { return "Confined" ; }

12 public Object invoke(Invocation inv) throws Throwable {
13 FieldWriteInvocation fwi = (FieldWriteInvocation)inv;
14 int v = (Integer)(fwi.getValue());
15 if (fwi.getField().getName().equals(fieldName))
16 if (v < min || v > max) throw new IllegalArgumentException();
17 return inv.invokeNext(); // proceed to subsequent interceptors/base code
18 }
19}

(b) <aop>
<prepare expr= "set(int Point->x) OR set(int Point->y)" />

</aop>

16 Compliance with these requirements also explains why standard J2EE services are not imple-
mented as aspects in JBoss, and are therefore not as flexible as they might be.

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 21

invoke (lines 12–18) is the only information that the method has on the interception.
The method assumes (line 13) that the join point kind is a field-write. The newly as-
signed value is obtained (line 14) by downcasting anObject to the proper type. Both
downcasts will fail if the interceptor is applied to an incorrect join point.

Fig. 4.1(b) is the XML code that directs the injection of the hooks intended for this
interceptor into classPoint . The interceptor is intimately coupled with the XML, in
making tacit assumptions on the join point kind and the argument type; violations of
these assumptions are only detected at runtime.
To create a shakein-typed instance ofPoint , one may write

Point p = Confined[0,1023,0,767]<Point>(); //Shakein version.
The JBoss equivalent is a bit longer:

Point p = new Point(); // JBoss dynamic AOP version.
((Advised)p)._getInstanceAdvisor().appendInterceptor(new Confined("x" , 0, 1023));
((Advised)p)._getInstanceAdvisor().appendInterceptor(new Confined("y" , 0, 767));

This demonstrates more intricacies of implementing aspects by a software framework:
First, we see that advices are applied only after the object was constructed (no refine-
ment of the constructors is possible). Second, since there is no explicit composition op-
erator17, two interceptors must be manually applied, one per axis. Third, we see thatp

must be casted to the interface typeAdvised . This interface type is implemented by
the modified (prepared) version ofPoint ; yet the compiler is not aware of this change.
If the class was not prepared (e.g., an inconsistency in the XML file), then this cast at-
tempt will fail. Finally, again due to compiler obliviousness, field names are represented
as string literals (here, as arguments to the interceptor’s constructor). Any mistake in the
field name (e.g., writing “X” instead of “x”) will go undetected and result in silent fail-
ure. (By comparison, an empty pointcut argument to the auxiliary shakein from Fig. 2.6
triggers a compile-time warning.)

Fig. 4.2 compares the runtime perfor- 100%

72%

100%

92%

100%

1.5% 3.3%

0%

20%

40%

60%

80%

100%

Plai
n

Ja
va

, n
o

as
pe

ct

JB
os

s -
 n

o
as

pe
ct

JB
os

s -
 C

on
fin

ed

Sha
ke

ins
 -

no
 a

sp
ec

t

Sha
ke

ins
 -

Con
fin

ed

Spr
ing

 -
no

 a
sp

ec
t

Spr
ing

 -
Con

fin
ed

O
p

er
at

io
n

s
th

ro
u

g
h

p
u

t
(n

o
rm

al
iz

ed
)

Figure 4.2. Performance degradation of
classPoint with different strategies of ap-
plying a “confinement” aspect.

mance of the JBoss and the shakein imple-
mentation of aspectConfined . The figure
depicts the operations throughput of class
Point in the base implementation and in the
different aspectualized versions.18 We see
that the original class suffers no performance
penalty in the shakein version. The shakein-
advised instance, generated by two subclass-
ing operations, is about 8% slower. In con-
trast, while using JBoss AOP, instances of
the original class suffer from a performance
impact of about 28% before any advice
is applied; this is the overhead introduced
by the join point hooks. Once applied, the
reflection-based interceptors slow the JBoss
version to 1.5% of the original throughput.

There are two main sources of perfor-
mance degradation in the JBoss implementation.Time wise, hooks slow down code,
and this slowdown occurs even if no advices are applied to the receiver instance. (In
17 Stacks cannot be used here.
18 Specifically we used the number of times the sequence of calls〈setX ,setY ,moveBy〉 can

be completed in a time unit.

22 Tal Cohen and Joseph (Yossi) Gil

classPoint , this slowdown was by 28%.) Moreover, even a non-prepared class may be
slowed down, if its code matches, e.g., a join point of acall to a prepared class.

Additional slowdown is caused by the advice having to use reflection-like objects
in order to learn about the join point. The invocation object must be downcast to the
specific invocation type (FieldWriteInvocation in Fig. 4.1(a)), and arguments must
be downcast fromObject references to their specific types. (As we have seen, this
slowdown was by more than an order of magnitude inPoint . We expect a more modest
relative performance degradation in classes that do more substantial computation.)

Space wise, the advice (whenever a join point is reached) is reified in a runtime ob-
ject. The memory consumed by this object must be managed, thereby leading to ad-
ditional slowdown. The invocation itself is reified in a number of objects (metadata,
argument wrappers, arguments array, etc.) which add to the space and time overheads
of the implementation. (A quick inspection of Fig. 4.1(a) reveals that there are at least
four objects generated in reifying the join point.)

4.2 A Comparison with Spring AOP

The Spring Application Framework is an “inversion of control”19 container, used for
applying services to standardJAVA objects. It is often used in conjunction with a J2EE
server for developing enterprise applications; however, Spring provides alternatives to
many of the J2EE services, in a more flexible and developer-friendly manner.

Objects in Spring are “beans”, all obtained via a centralized factory which is config-
ured using an XML file. This XML file specifies what properties should be set and what
services applied to each bean type. Developers can choose from a wide range of pre-
defined services (e.g., Hibernate20-based persistence) or define their own. New services
(as well as existing ones) are defined using Spring’s AOP facilities21.

Much like shakeins, AOP in Spring is based on the generation of new classes. When
advice is applied to a class, a new class is generated, which either implements the same
interfaces as the base class or else extends it as a subclass. Thus, Spring enjoys several
of the benefits of shakeins; most notably, there is no performance penalty to instances of
the original class, which remains unmodified (see Fig. 4.2). However, beyond this simi-
larity, there are several differences of note between the Spring and shakein approaches.

Advice in Spring is manifested as an interceptor class, which is invoked whenever an
advised method is executed. Pointcuts are also manifested as classes, and interrogated
at runtime to find out which methods should be advised. Much as in JBoss, the mecha-
nism relies on a sophisticated combination of libraries and configuration files, with no
changes to the language itself. Therefore, Spring AOP shares much of the tolls noted
for JBoss AOP, including similar space and time complexities (with the exception of
hooks-induced slowdowns). Additional performance penalties are caused by the need
to evaluate pointcuts at runtime, as well as the runtime generation of subclasses.

As a design decision, Spring AOP only support method invocation join points (and
that, only for non-private methods). In our tests, the lack of support for field access

19 http://www.martinfowler.com/articles/injection.html
20 http://www.hibernate.org
21 Spring also supports the integration of standardASPECTJ aspects.

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 23

join points implied that theConfined aspect had to be made explicitly aware of each
of thePoint methods that can update the point’s coordinates; in particular, the advice
had to re-create the logic for themoveBy method. The Spring point of view contends
that this would not have been needed, hadmoveBy relied onsetX andsetY to update
the fields, rather than using direct access (recall Fig. 2.2(a)). But from this very claim
we must conclude that the Spring aspect is fragile with respect to changes in the im-
plementation ofPoint ; shouldmoveBy be updated to rely on the setter methods, the
advice must be accordingly updated. A non-fragile aspect implementation must rely on
examining the control-flow at runtime, which a noticeable performance hit.

In our benchmarks (Fig. 4.2), the Spring-basedConfined aspect (which was not
created using composition, due to its asymmetry with regard tomoveBy) was over twice
as fast as the JBoss version, but still much slower than the shakeins-based version.

5 Weaving, Deployment and Deploy-Time Weaving

Now that the theoretical foundation of the shakeins construct was established, and that
we understand how and why it may be useful in the context of middleware frameworks,
the time has come to combine the two. The first step is in describing how deployment, a
basic technique of J2EE, can be generalized for the process of weaving aspects (specif-
ically, shakeins) into an application.

Sec. 5.1 explains weaving. Deployment is the subject of Sec. 5.2. Weaving of shakeins
onto EJBs is discussed in Sec. 5.3. Sec. 5.4 generalizes this process to arbitrary classes.

5.1 Weaving

Weavingis the process of inserting the relevant code from various aspects into desig-
nated locations, known asjoin points, in the main program. In their original presenta-
tion of ASPECTJ [9], Kiczaleset al.enumerate a number of weaving strategies: “aspect
weaving can be done by a special pre-processor, during compilation, by a post-compile
processor, at load time, as part of the virtual machine, using residual runtime instruc-
tions, or using some combination of these approaches.” Each of these weaving mecha-
nisms was employed in at least one AOP language implementation. As mentioned be-
fore, our implementation of shakeins use its own peculiardeploy-time weavingstrategy.
In this section we motivate this strategy and explain it in greater detail.

We first note that the weaving strategies mentioned in the above quote transgress the
boundaries of the standard object model. Patching binaries, pre-processing, dedicated
loaders or virtual machines, will confuse tools such as debuggers, profilers and static
analyzers, and may have other adverse effects on generality and portability.

Further, weaving introduces a majorconceptualbottleneck. As early as 1998, Walker
et. al [30] noted the disconcert of programmers when realizing that merely reading a
unit’s source code is not sufficient for understanding its runtime behavior22.

22 Further, Laddad [8, p. 441] notes that inASPECTJ the runtime behavior cannot be deduced
even by readingall aspects, since their application to the main code is governed by the com-
mand by which the compiler was invoked.

24 Tal Cohen and Joseph (Yossi) Gil

The remedy suggested by Constantinideset. al in the Aspect Moderatorframe-
work [31] was restricting weaving to the dominion of the OOP model. In their suggested
framework, aspects and their weaving are realized using pure object oriented constructs.
Thus, every aspect oriented program can be presented in terms of the familiar notions
of inheritance, polymorphism and dynamic binding. Indeed, as Walkeret al.conclude:
“programmers may be better able to understand an aspect-oriented program when the
effect of aspect code has a well-defined scope”.

Aspect Moderator relies on thePROXY design pattern [21] to create components that
can be enriched by aspects. Each core class has a proxy which manages a list of op-
erations to be taken before and after every method invocation. As a result, join points
are limited to method execution only, and onlybefore () andafter () advices can
be offered. Another notable drawback of this weaving strategy is that it isexplicit, in
the sense that every advice has to be manually registered with the proxy. Registration is
carried out by issuing a plainJAVA instruction—there are no external or non-JAVA el-
ements that modify the program’s behavior. Therefore, long, tiresome and error-prone
sequences of registration instructions are typical to Aspect Moderator programs.

A better strategy of implementing explicit weaving is that this code is generated by
an automatic tool from a concise specification. The shakein weaving mechanism gives
in essence this tool. However, rather than generate explicit weaving code for a proxy, it
generates a woven version of the code in anewly generated subclass. By replacing the
proxy pattern with the notion of subclassing, it also able to handle advice types other
thanbefore () andafter () , and handle a richer gamut of join point types, as detailed
in Sec. 6.3.

Thus, shakeins do not use any of the obtrusive weaving strategies listed above. In-
stead, the mechanism employs a weaving strategy thatdoes not breakthe object model.
Instead of modifying binaries (directly, or by pre-processing the source code), the ap-
plication of a shakein to a class results in an “under the hood” generation of a new class
that inherits from, rather than replaces, the original. The new class provides an alterna-
tive realization, a re-implementation, of the same type; it does not introduce a new type,
since there are no visible changes to the interface. This re-implementation is generated
by advising the original one with the advice contained in the shakein.

Clearly, there are limitations to the approach of implementing shakeins as subclasses.
The main such limitation is that Prop. 1 does not hold in the general case. Below we
will show that in the particular case of EJBs in J2EE, this restriction does not arise,
because access to EJBs is through interfaces.

5.2 Deployment

J2EE offers a unique opportunity for generating the subclasses required for the weaving
of shakeins. Fig. 5.1 compares the development cycle of traditional and J2EE applica-
tion. We see thatdeploymentis a new stage in the program development process, which
occurs after compilation but prior to execution. It is unique in that although new code
is generated, it is not part of the development, but rather of user installation.

Deployment is the magic by which J2EEservices, such as security and transaction
management, are welded to applications. The generation of sub- and support classes is
governed bydeployment descriptors, which are XML configuration files.

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 25

The idea behind deploy-time weaving is to extend this magic, by placing the shakein
semantics in government of this process. As shakeins are based on straightforward in-
heritance, this extension also simplifies the structure of and inter-relationships between
the generated support classes.

Technically, deployment is the process by
Write Compile Execute

(a) Traditional program development steps

Write Compile Deploy
(b) J2EE program development steps

Execute

�����������	����

�����������	����

��	���	����

��	���	����

Figure 5.1. Program development
steps:(a) traditional,(b) J2EE.

which an application is installed on a J2EE ap-
plication server. Having received the application
binaries, deployment involves generating, com-
piling and adding additional support classes to
the application. For example, the server gener-
atesstubandtie (skeleton) classes for all classes
that can be remotely accessed, in a manner simi-
lar to, or even based on, the RMI compiler23.Even

though some J2EE application servers generate support class binaries directly (without
going through the source), these always conform to the standard object model.

We must study some of the rather mundane details of deployment in order to under-
stand how it can be generalized to do weaving. To do so, consider first Fig. 5.2, which
shows the initial hierarchy associated with anACCOUNT CMP bean (see Sec. 1.2).

At the right hand side of the ����������	

���
��

�
�
����������

����������
��!"#$���
�%!�&�'�()!� *+'#��

����������	
,--./��

����������	

���
��

�
�
�0�1�
�-�

����������	

���
��

�
�
�0�2.3�

�)�!��!� *4))#5(�
�+�(�&67��8��69!6� *4))#5(�

����������	
,--./��2.3�

:;��<=��;>?
:=�@AB��>?
�%!�C�� *D���(%
�$!�C��
�%!�&�'�()!� *+'#��
�$!�&�'�()!�
:�EFGA�=>?
:�EFH�A��>?
:�EFI�����>?
:�EFJ���K���>?
:�EFL�BB�K���>?
:�EFM�NAK�>?
:B��O����PIA���Q�>?
:R�B��O����PIA���Q�>?

,--./������

Figure 5.2. Programmer-created classes for theAC-
COUNT EJB.

figure, we see interfaceAccount ,
which inherits fromjavax.ejb. -
EJBObject . This interface is
written by the developer in support
of the remote interface to the bean24.
This is where all client-accessible
methods are declared. In the exam-
ple, there are three such methods:
withdraw() , deposit() , and
getBalance() . Class Account

resides at theclient side.
On the left hand side of the fig-

ure, we see abstract classAccount -
Bean, inheriting from javax.ejb.EntityBean . The J2EE developer’s main effort
is in coding this class, which will reside at theserver side. There are three groups of
methods in the bean class:
1. Business Logic.The first group of methods in this class consists the implementation

of business logic methods. These aredeposit() andwithdraw() in the example.
2. Accessors of Attributes.EJBattributesare those fields of the class that will be gov-

erned by the persistence service in the J2EE server. Each attributeattr is repre-
sented by abstract setter and getter methods, calledset Attr () andget Attr ()

respectively. Attributes are not necessarily client-accessible.
In the example, there are four such accessors, indicating that the beanACCOUNThas
two attributes:id (the primary key) andbalance . Examining theAccount interface
we learn thatid is invisible to the client, whilebalance is read-only accessible.

3. Lifecycle.The third and last method group comprises a long list of mundane lifecycle
methods, such asejbLoad() andejbStore() , most of which are normally empty.

23 http://java.sun.com/j2se/1.5.0/docs/guide/rmi/
24 For the sake of simplicity, we assume thatACCOUNT has a remote interface only, even though

beans can have either a local interface, a remote interface, or both.

26 Tal Cohen and Joseph (Yossi) Gil

Even though sophisticated IDEs can produce a template implementation of these,
they remain a developer’s responsibility, contaminating the functional concern code.
Later we shall see how deploy-time weaving can be used to remove this burden.

Finally, at the center of Fig. 5.2, we see interfaceAccountHome , which declares a
FACTORY [21] of this bean. Clients can only generate or obtain instances of the bean
by using this interface.

Concrete classes to implementAccountHome , Acount andAccountBean are gen-
erated at deployment time. The specifics of these classes vary with the J2EE implemen-
tation. Fig. 5.3 shows some of the classes generated by IBM’s WebSphere Application
Server (WAS)25 version 5.0 when deploying this bean.

Examining the figure, we see����������	

���
��

�
�
����������

����������
��!"#$���
�%!�&�'�()!� *+'#��

����������	
,--./��

����������	

���
��

�
�
�0�1�
�-�

����������	

���
��

�
�
�0�2.3�

�)�!��!� *4))#5(�
�+�(�&67��8��69!6� *4))#5(�

����������	
,--./��2.3�

:;��<=��;>?
:=�@AB��>?
:C��D�E����>?F�EA��

G
HIIJKLM

G
NMKO

:C��P=>?FQ����C
:B��P=>?
:C��D�E����>?F�EA��
:B��D�E����>?

RJLISTMTHIIJKLM
G
OUTVWXVY

Z�=FQ����C

Z[�E����F�EA��

:������>?F\A������]��Â��
_
[̀�ab�ac

:���=Dde��f��dg�d>?F\A������]��Â��
_
[̀�ab�ac

hiNjTkJMTRlmHIIJKLMnJkT
G
OUTVWXVY

�������B	

:;��<=��;>?
:=�@AB��>?
�%!�o�� *p���(%
�$!�o��
�%!�&�'�()!� *+'#��
�$!�&�'�()!�
:�q[rA�=>?
:�q[Q�A��>?
:�q[\�����>?
:�q[]���s���>?
:�q[e�BB�s���>?
:�q[t�fAs�>?
:B��u����d\A���v�>?
:̂�B��u����d\A���v�>?

,--./������

Figure 5.3.ACCOUNT classes defined by the program-
mer, and support classes (in gray) generated by WAS
5.0 during deployment.

that it is similar in structure to
Fig. 5.2, except for the classes,
depicted in gray, that the deploy-
ment process created:Concrete -
Account_b7e62f65 is the con-
crete bean class, implementing
the abstract methods defined in
AccountBean as setters and get-
ters for the EJB attributes. In-
stances of this class are handed
out by class EJSRemoteCMP-
AccountHome_b7e62f65 , which
implements the factory interface
AccountHome .

Finally, _Account_Stub , re-
siding at the client side, inter-
communicates withConcrete -
Account_b7e62f65 which re-
sides at the server side.

In support of theACCOUNT bean, WAS deployment generates several additional
classes which are not depicted in the figure: a stub for the home interface, ties for both
stubs, and more. Together, the deployment classes realize services that the container
provides to the bean: persistence, security, transaction management and so forth. How-
ever, as evident from the figure, all this support is provided within the standard object
oriented programming model.

5.3 Deployment as a Weaving Process for EJBs

Having understood the process of deployment and the generation of classes in it,
we can now explain how deployment can be used as a weaving process. Consider
first the ordered application of four standardASPECTJ2EE shakeins:Lifecycle ,
Persistence , Security andTransactions to the beanACCOUNT. (Such a case
is easier than the more general case, in which the target class is not an EJB. We will
discuss this issue below.)
25 http://www.ibm.com/software/websphere/

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 27

Weaving by deployment generates, for each application of an aspect (or a shakein)
to a class, a subclass of the target. This subclass is called anadvised class, since its
generation is governed by the advices given in the aspect. Accordingly, the sequence of
applications under consideration will generate four advised classes.

Fig. 5.4 shows the class hierarchy after the deployment tool generated these four class
in support of the shakein application expression

Transactions<Security<Persistence<Lifecycle<Account>>>> .
Comparing this ����������	

���
��

�
�
����������

����������
��!"#$���
�%!�&�'�()!� *+'#��

����������	
,--./��

����������	

���
��

�
�
�0�1�
�-�

����������	

���
��

�
�
�0�2.3�

�)�!��!� *4))#5(�
�+�(�&67��8��69!6� *4))#5(�

����������	
,--./��2.3�

:;��<=��;>?
:=�@AB��>?
:C��D�E����>?F�EA��

G
HIIJKLM

G
NMKO

:P=QP��AR��
S
T��B�B�����>?

:
S
����>?

:B��U=>?
:B��D�E����>?
:�VWXA�=>?
:�VWY�A��>?
:�VWZ�����>?
:�VWP���Q���>?
:�VWT�BB�Q���>?
:�VW[�\AQ�>?

H]̂HIIJKLM
G
_̀abcbM̀ LÌ

d�A��FZA������A�

d=���eFWAAE���

d@��\f�eZE�BBFY����C

d@��\f�eg��E=FY����C

d���E=h�@FY����C

:������>?FP=QP��AR��
S
i���B����A�B

:���=DeT��\��ef�e>?FP=QP��AR��
S
i���B����A�B

jJLIàM̀ k̀lJM̀HIIJKLMmJl̀

:P=QP��AR��
S
Y��R���e>?

:
S
����>?

:;��<=��;>?
:=�@AB��>?

H]̂HIIJKLM
G
ǸIKacMn

d@�����@E�FY����C

d��oR���=[AE�FY����C

:P=QP��AR��
S
i���B����A�B>?

:
S
����>?

:;��<=��;>?
:=�@AB��>?
:C��U=>?FY����C
:B��U=>?
:C��D�E����>?F�EA��
:B��D�E����>?

H]̂HIIJKLM
G
paqLbqIMcJLb

d�A���r�Fi���B����A�ZA���r�

d\A=�BFs�B<��WE�

d���������FY����C

�������B	

:P=QP��AR��
S
X����e�E�>?

:C��U=>?FY����C
:B��U=>?
:C��D�E����>?F�EA��
:B��D�E����>?
:�VWXA�=>?
:�VWY�A��>?
:�VWZ�����>?
:�VWP���Q���>?
:�VWT�BB�Q���>?
:�VW[�\AQ�>?
:B��t����eZA���r�>?
:R�B��t����eZA���r�>?
:C��t����eZA���r�>?

H]̂HIIJKLM
G
ucv̀ InIẁ

d�=FY����C

dW�E����F�EA��

d��rFt����eZA���r�

:;��<=��;>?
:=�@AB��>?
�%!�x�� *y���(%
�$!�x��
�%!�&�'�()!� *+'#��
�$!�&�'�()!�

,--./������

Figure 5.4.ACCOUNTclasses defined by the programmer, and sup-
port classes (in gray) generated byASPECTJ2EEdeployment.

figure to Fig. 5.3, we
see first that the class
AccountBean was
shortened by moving
the lifecycle methods to
a newly defined class,
AdvAccount Life -
cycle . The shakein
Lifecycle made it
possible to eliminate
the tiring writing of
token (and not always
empty) implementa-
tions of the lifecycle
methods in each bean.
All these are packaged
together in a standard
Life cycle aspect26.

AdvAccount -
Lifecycle is the

advised class realiz-
ing the application of
Lifecycle to AC-
COUNT. There are three
other advised classes in the figure, which correspond to the application of aspects
Persistence , Security andTransactions to ACCOUNT.

The sequence of aspect applications is translated into a chain of inheritance of advised
classes, starting at the main bean class. Theroot advised classis the first class in this
chain (AdvAccount Lifecycle in the example), while theterminal advised class
is the last (AdvAccount Transactions in the example). Fields, methods and inner
classes defined in an aspect are copied to its advised class.Advised methodsin this class
are generated automatically based on the advices in the aspect.

We note that although all the advised classes are concrete, only instances of the ter-
minal advised class are created by the bean factory (the generated EJB home). In the
figure for example, classConcreteRemoteAccountHome creates allACCOUNTs,
which are always instances ofAdvAccount Transactions .
26 The lifecycle methods are declared in the interfacejavax.ejb.EntityBean . Hence, im-

plementing them in a shakein does not change the type of classAccountBean .

28 Tal Cohen and Joseph (Yossi) Gil

It may be technically possible to construct instances of this bean in which fewer
aspects are applied; there are, however, deep theoretical reasons for preventing this from
happening. Suppose that a certain aspect applies to a software module such as a class or
a routine, etc., in all but some exceptional incarnations of this module. Placing the tests
for these exceptions at the point of incarnation (routine invocation or class instantiation)
leads to scattered and tangled code, and defeats the very purpose of AOP. The bold
statement that some accounts are exempt from security restrictions should be made
right where it belongs—as part of the definition of the security aspect! Indeed, J2EE
and other middleware frameworks do not support conditional application of services to
the same business logic. A simple organization of classes in packages, together with
JAVA accessibility rules, enforce this restriction and prevents clients from obtaining
instances of non-terminal advised classes.

5.4 Deploy Time Weaving for General Classes

We just saw that deploy time weaving generates, at deployment time, an advised class
for each application of an aspect ofASPECTJ2EE. Let us now consider the more gen-
eral case, in which the target class is not an EJB.

It is instructive to compare the advising of EJBs (Fig. 5.4) with the general structure
of shakein classes, as depicted in Fig. 2.3. We see that the diagrams are similar in
making each aspect application into aJAVA class. However, Fig. 5.4 adds two factors to
the picture: First, the generation of instances ofACCOUNT is controlled by an external
factory class. Second is the fact that the classAccount is abstract.

Together these two make one of the key properties of EJBs, namely the fact that an
EJB does not have aforge facet. Instead, the framework imposes a requirement that all
instances of the class are obtained from an external class, which follows theABSTRACT

FACTORY design pattern.
This property makes it possible to apply an aspect, a service, or a shakein toall

instances of a certain class. When applying the deploy time weaving technique to non-
EJB classes, one may chose to degenerate the forge facet of the target class, as in EJBs,
or in the case that this is not possible, make sure that the correct constructors are invoked
in the code.

6 The ASPECTJ2EE Programming Language

Having described the shakeins construct and deploy-time weaving, we are ready to
describe theASPECTJ2EElanguage.

The syntax ofASPECTJ2EE is a variant of ASPECTJ. The semantics ofAS-
PECTJ2EE-aspects is based on a (limited) implementation of the shakein concept.
Hence, aspects inASPECTJ2EE(unlike in ASPECTJ) do not have a global effect, and
are woven into the application at deployment time (rather than compile time).

When compared to shakeins, the main limitation ofASPECTJ2EE-aspects(hence-
forth just “aspects”, unless noted otherwise), is that their application to classes is gov-
erned by an externaldeployment descriptor file, written in XML. Accordingly, AS-
PECTJ2EEdoes not provide a syntax for explicitly applying aspects to classes. Con-

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 29

sequently, the integration of aspects intoASPECTJ2EEis not complete. Indeed,AS-
PECTJ2EEsuffers from two XML-JAVA coupling issues: (i)JAVA code using a class
whose generation is governed by XML is coupled with this XML code. (ii) XML file
applying an aspect to aASPECTJ2EEclass is coupled with theASPECTJ2EEnames.
However, in contrast with JBoss aspects, the detection of errors due to such coupling,
i.e., using wrong class names or illegal or empty pointcut expressions, is not at run time,
but rather at deployment time.

Comparing theASPECTJ2EEversion of shakeins with the theoretical description of
the concept, we find that some of the benefits (see Sec. 2.4) are preserved, while others
are not:

1. Selective applicationis available; aspects are applied only to classes specified in the
deployment descriptor.

2. Non-destructive applicationis preserved. However, instances are obtained using
Home objects (factories) only. Therefore, the programmer, wearing the hat of anap-
plication assembler,can dictate which combinations of aspect application are avail-
able. For example, it is possible to ensure that all instances ofACCOUNT are sub-
jected to a security aspect.

3. Explicit and Flexible Orderingis provided by the XML binding language.
4. Compositionis not supported; there is no syntax for composing two or more aspects.
5. Configuration parametersare available; the deployment descriptor is used for argu-

ment passing.
6. Repeated applicationis fully supported.
7. Parameter checkingis absent.

Sec. 6.1 presents the language syntax. The application of aspects through deployment
descriptors is the subject of Sec. 6.2. Sec. 6.3 explains how deploy-time weaving can
implement the various kinds of join points. Finally, Sec. 6.4 gives a broad overview of
the standard aspect library.

6.1 Language Syntax

The major difference betweenASPECTJ2EEandASPECTJ is thatASPECTJ2EEsup-
ports parameterized aspects. For example, Fig. 6.1 shows the definition of a role-based
security shakein that accepts two parameters. The first parameter is a pointcut defini-
tion specifying which methods are subjected to a security check. The second is the user
role-name that the check requires.

Fig. 6.1The definition of a simpleSecurity aspect inASPECTJ2EE.
aspect Security[pointcut secured(), String requiredRole] {

before (): secured() {
if (!userInRole(requiredRole)) {

throw new RuntimeException("Security Violation");
}

}

private boolean userInRole(String roleName) {
// Check if the currently active user has the given role...

}
}

30 Tal Cohen and Joseph (Yossi) Gil

Parameter values must be known at deploy time. Accordingly, there are four kinds of
parameters for aspects:

– Type parameters, preceded by the keywordclass . The type can be restricted (like
type parameters inJAVA generics) using theimplements andextends keywords.

– Pointcut parameters, preceded by thepointcut keyword.
– String parametersand primitive type parameters, preceded by the type name

(String , int , boolean , etc.).

In contrast withASPECTJ, the scope of a specific aspect application inASPECTJ2EE
is limited to its target class. Therefore, any pointcut that refers to join points in other
classes is meaningless. Accordingly,ASPECTJ2EEdoes not have acall join point,
since it refers to the calling point, rather than the execution point, of a method. (To apply
advice to method execution, anexecution join point can be used.) This restriction is
a direct result of the shakein semantic model, and it eliminates the confusion associated
with thecall join point in relation to inheritance (see Sec. 2.2).

All other join point kinds are supported, but with the understanding that their scope is
limited to the target class; for example, a field-set join point for apublic field will not
capture access to the field from outside its defining class.ASPECTJ2EEalso introduces
a new kind of join point for handling remote invocation of methods.

Since the application of aspects inASPECTJ2EEis explicit, it does not recognize the
ASPECTJ statementdeclare precedence .

Finally, there is a subtle syntactical difference due to the “individual target class”
semantics ofASPECTJ2EEaspects: The definition of a pointcut should not include the
target class name as part of method, field or constructor signatures. Only the member’s
name, type, access level, list of parameter types, etc. can be specified. For example,
the signature matching anypublic void method accepting a singleString argument
is written ASPECTJ aspublic void *.*(String) . The same signature should be
written aspublic void *(String) in ASPECTJ2EE. TheASPECTJ form applies to
the methods with this signature inall classes, whereas theASPECTJ2EEform applies
only to such methods in the class to which the containing aspect is applied.

6.2 The Deployment Descriptor

In ASPECTJ, the application of aspects to classes is specified declaratively. Yet the pro-
cess is not completely transparent: the application assembler must take explicit actions
to make sure that the specified aspect application actually takes place. In particular, he
must remember to compile each core module with all the aspects that may apply to it.
(Or else, an aspect with global applicability may not apply to certain classes if these
classes were not compiled with it.)

The order of application of aspects inASPECTJ is governed bydeclare
precedence statements; without explicit declarations, the precedence of aspects in
ASPECTJ is undefined. Also,ASPECTJ does not provide any means for passing param-
eters to the application of aspects to modules.

In contrast, the shakeins semantics in general, andASPECTJ2EEin particular, re-
quire an explicit specification of each application of an aspect to a class, along with

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 31

any configuration parameters. This specification could have been done as part of the
programming language. But, following the conventions of J2EE, and in the sake of
minimizing the syntactical differences betweenASPECTJ2EEandASPECTJ, we chose
to place this specification in anexternalXML deployment descriptor.

In fact, we shall see that the XML specification is in essence the abstract syntax
tree, which would have been generated from parsing the same specification if written
inside the programming langauge. Fig. 6.2 gives an example, showing the sequence
of application of aspects toACCOUNT which generated the classes in Fig. 5.4. Over-
all, four aspects are applied to the bean:Lifecycle , Persistence , Security , and
Transactions . All of these are drawn from theaspectj2ee.core aspect library.

Fig. 6.2 A fragment of an EJB’s deployment descriptor specifying the application of
aspects to theACCOUNT bean.
<entity id ="Account">

<ejb-name >Account</ ejb-name >
<home>aspectj2ee.demo.AccountHome</ home>
<remote >aspectj2ee.demo.Account</ remote >
<ejb-class >aspectj2ee.demo.AccountBean</ ejb-class >
<apply >

<aspect >aspectj2ee.core.Lifecycle</ aspect >
</ apply >
<apply >

<aspect >aspectj2ee.core.Persistence</ aspect >
<parameter name ="primKeyClass">java.lang.String</ parameter >
<parameter name ="primKeyField">serialNumber</ parameter >
<parameter name ="table">ACCOUNTS</ parameter >
<parameter name ="fieldMap">serialNumber:SERIAL, balance:BALANCE</ parameter >

</ apply >
<apply >

<aspect >aspectj2ee.core.Security</ aspect >
<parameter name ="secured">execution(*(..))</ parameter >
<parameter name ="requiredRole">User</ parameter >

</ apply >
<apply >

<aspect >aspectj2ee.core.Transactions</ aspect >
<parameter name ="reentrant">false</ parameter >
<parameter name ="requiresnew">execution(deposit(..)) ||

execution(withdraw(..))</ parameter >
<parameter name ="required">execution(*(..)) && !requiresnew()</ parameter >

</ apply >
</ entity >

The figure shows the XML element describing beanACCOUNT. (In general, the de-
ployment descriptor contains such entities for each of the beans, along with other infor-
mation.) We follow the J2EE convention, in that the bean is defined by the<entity>
XML element.

Element<entity> has several internal elements. The first four:<ejb-name> ,
<home>, <remote> , and<ejb-class> , specify theJAVA names that make this
bean. These are part of J2EE and will not concern us here.

Following are elements of type<apply> , which are anASPECTJ2EEextension.
Each of these specifies an application of an aspect to the bean.

An <apply> element has two kinds of internal elements:

1. <aspect> , naming the aspect to apply to the bean.
For example, element<aspect>aspectj2ee.core.Lifecycle</aspect> in
the figure specifies thataspectj2ee.core.Lifecycle is applied toACCOUNT.

32 Tal Cohen and Joseph (Yossi) Gil

2. <parameter> , specifying the configuration parameters passed to the aspect.
Consider for example theSecurity aspect (Fig. 6.1). In Fig. 6.2, we see that the
actual value for thesecured pointcut formal parameter isexecution (*(..))

(i.e., the execution of any method). Similarly, formal string parameterrequired -
Role was actualized with value"User" .
Thus, the third<apply> element is tantamount to configuring the aspect with the
following pseudo-syntax:Security[execution (*(..)), "User"] .

In support ofexplicit and flexible ordering, the order of<apply> elements specifies
the order by which aspects are applied to the bean. Intra-aspect precedence (where
several advices from the same aspect apply to a single join point) is handled as in
ASPECTJ, i.e., by order of appearance of advices.

We can generalize the example above to write the entire sequence of application of
aspects to the bean, along with their parameters. In total, there are nine such param-
eters. These, together with the aspect names, would have made the programming lan-
guage equivalent of the application sequence in Fig. 6.2 cumbersome and error-prone.
We found that the XML notation is a convenient replacement to developing syntax for
dealing with this unwieldiness.

Note thatACCOUNT can be viewed as an entity bean with container-managed per-
sistence (CMP EJB) simply because it relies on the core persistence aspect, which
parallels the standard J2EE persistence service. Should the developer decide to use a
different persistence technique, that persistence system would itself be defined as an
ASPECTJ2EEaspect, and applied toACCOUNT in the same manner. This is parallel
to bean-managed persistence beans (BMP EJBs) in the sense that the persistence logic
is provided by the application programmer, independent of the services offered by the
application server. However, it is completely unlike BMP EJBs in that the persistence
code would not be tangled with the business logic and scattered across several bean
and utility classes. In this respect,ASPECTJ2EEcompletely dissolves the distinction
between BMP and CMP entity beans.

6.3 Implementing Advice by Sub-Classing

ASPECTJ2EEsupports each of the join point kinds defined inASPECTJ, except for
call , sincecall advice is applied at theclient (caller) site and not to the main class.
We next describe advice are woven into the entity bean code in each supported kind of
join point.

Execution Join Points. Theexecution (methodSignature) join point is defined
when a method is invoked and control transfers to the target method.ASPECTJ2EEcap-
turesexecution join points by generating advised methods in the advised class, over-
riding the inherited methods that match the execution join point. Consider for example
the advice in Fig. 6.3(a), whose pointcut refers to the execution of thedeposit()

method. This is abefore () advice which prepends a printout line to matched join
points. When applied toACCOUNT, only one join point, the execution ofdeposit() ,
will match the specified pointcut. Hence, in the advised class, thedeposit() method

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 33

will be overridden, and the advice code will be inserted prior to invoking the origi-
nal code. The resulting implementation ofdeposit() in the advised class appears in
Fig. 6.3(b).

Fig. 6.3 (a) Sample advice fordeposit() execution, and(b) the resulting advised
method.
(a) before (float amount): execution (deposit(float)) && args (amount) {

System.out.println("Depositing " + amount);
}

(b) void deposit(float amount) {
System.out.println("Depositing " + amount);
super .deposit(amount);

}

Recall that only instances of the terminal advised class exist in the system, so ev-
ery call to the advised method (deposit() in this example) would be intercepted by
means of regular polymorphism. Overriding and refinement can be used to implement
before () , after () (includingafter () returning andafter () throwing), and
around () advice. Witharound () advice, theproceed keyword would indicate the
location of the call to the inherited implementation.

The example in Fig. 6.4 demonstrates the support forafter () throwing advice.
The advice, listed in part (a) of the figure, would generate a printout if thewithdraw()

method resulted in anInsufficientFundsException . The exception itself is re-
thrown, i.e., the advice does not swallow it. The resulting advised method appears in
part (b) of the figure. It shows howafter () throwing advice are implemented by
encapsulating the original implementation in atry /catch block.

Fig. 6.4 (a) Sampleafter () throwing advice, applied to a method execution join
point, and(b) the resulting advised method.
(a) after () throwing (InsufficientFundsException ex)

throws InsufficientFundsException:
execution (withdraw(..)) {

System.out.println("Withdrawal failed: " + ex.getMessage());
throw ex;

}

(b) void withdraw(float amount) throws InsufficientFundsException {
try { super .withdraw(amount);
} catch (InsufficientFundsException ex) {

System.out.println("Withdrawal failed: " + ex.getMessage());
throw ex;

}
}

An execution join point may refer toprivate methods. Since such methods can-
not be overridden in subclasses, theASPECTJ2EEweaver generates a new, advised ver-
sion of the method—and then overrides any method thatinvokesthe private method, so
that the callers will use the newly-generated version of the private callee rather than the
original. The overriding version of the callers includes a complete re-implementation
of each caller’s code, rather than using refinement, so that only the new version of the
callee will be used. The only exception is where a private method is invoked by a con-
structor, which cannot be replaced by an overriding version.ASPECTJ2EEwill issue a
warning in such cases.

34 Tal Cohen and Joseph (Yossi) Gil

This technique is used not only withexecution join points, but whenever an advice
apples to code inside aprivate method (e.g., when a field access join point is matched
by code inside one).

A similar problem occurs withfinal andstatic methods. However, such methods
are disallowed by the J2EE specification and may not be included in EJB classes.

Constructor Execution Join Points. The constructor execution join point inASPECTJ
is defined using the same keyword as regular method execution. The difference lies in
the method signature, which uses the keywordnew to indicate the class’s constructor.
For example, the pointcutexecution (new(..)) would match the execution of any
constructor in the target class.

Unlike regular methods, constructors are limited with regard to the location in the
code where the inherited implementation (super()) must be invoked. The invocation
must be the first statement of the constructor, and in particular it must occur before any
field access or virtual method invocation. Hence, join points that refer to constructor
signatures can be advised, but any code that executes before the inherited constructor
(before () advice, or parts ofaround () advice that appear prior to the invocation of
proceed ()) is invalid.

An around () advice for constructor execution that does not contain an invocation
of proceed () would be the equivalent of aJAVA constructor that does not invoke
super () (the inherited constructor). This is tantamount to having an implicit call to
super () .

Field Read and Write Access Join Points.Field access join points match references
to and assignments of fields.ASPECTJ2EEpresents no limitations on advice that can
be applied to these join points. However, if a field is visibleoutsideof the class (e.g.,
a public field), then anyexternalaccess will bypass the advice. It is therefore recom-
mended that field access will be restricted toprivate fields and EJBattributesonly.
Recall that attributes are not declared as fields; rather, they are indicated by the program-
mer usingabstract getter and setter methods. These methods are then implemented
in the concrete bean class (in J2EE) or in the root advised class (inASPECTJ2EE).

If no advice is provided for a given attribute’s read or write access, the respective
method implementation in the root advised class would simply read or update the class
field. The field itself is also defined in the root advised class. However, an attribute can
be advised usingbefore () , around () andafter () advice, which would affect the
way the getter and setter method are implemented.

If an advice is applied to a field (which is not an attribute), all references to this field
by method in the class itself are advised by generating overriding versions of these
methods. However, since aprivate field is not visible even to subclasses, this might
require generating a new version of the field, whichhides[32, Sect. 8.3.3] the original
declaration. In such cases, any method that accesses the field must be regenerated, even
where the advice does not cause any code alteration, so that the overriding version will
access the new field.

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 35

Exception Handler Join Points. The handler join point can be used to introduce
advice intocatch blocks for specific exception types. Since thecatch block per-se
cannot be overridden, advising such a join point results in a new, overriding version of
the entire advised method. Most of the code remains unchanged from the original, but
the code inside thecatch block is altered in accordance with the advice.

Remote Call Join Points. The remotecall join point designator is a new keyword
introduced inASPECTJ2EE. Semantically, it is similar toASPECTJ’s call join point
designator, defining a join point at a method invocation site. However, it only applies to
remote calls to various methods; local calls are unaffected.

Remote call join points are unique, in that their applied advice does not appear in
the advised sub-class. Rather, they are implemented by affecting the stub generated at
deploy time for use by EJB clients (such as_Account_Stub in Fig. 5.4). For example,
the around () advice from Fig. 6.5(a) adds printout code both before and after the
remote invocation ofAccount.deposit() . The generated stub class would include a
deposit() method like the one shown in part (b) of that figure. Since the advised code
appears in the stub, rather than in a server-side class, the output in this example will be
generated by the client program.

Fig. 6.5(a) Sample advice for a method’sremotecall join point, and(b) the resulting
deposit() method generated in the RMI stub class.
(a) around (): remotecall(deposit(..)) {

System.out.println("About to perform transaction.");
proceed ();
System.out.println("Transaction completed.");

}

(b) public void deposit(float arg0) {
System.out.println("About to perform transaction.");
// ... normal RMI/IIOP method invocation code ...
System.out.println("Transaction completed.");

}

Remote call join points can only refer to methods that are defined in the bean’s remote
interface. Advice usingremotecall can be used to localize tier-cutting concerns, as
detailed in Sec. 7.

Control-Flow Based Pointcuts. ASPECTJ includes two special keywords,cflow and
cflowbelow , for specifying control-flow based limitations on pointcuts. Such limita-
tions are used, for example, to prevent recursive application of advice. Both keywords
are supported byASPECTJ2EE.

The manner in which control-flow limitations are enforced relies on the fact that de-
ployment can be done in a completely platform-specific manner, since at deploy time,
the exact target platform (JVM implementation) is known. Different JVMs use differ-
ent schemes for storing a stack snapshot in instances of thejava.lang.Throwable

class27 (this information is used, for example, by the methodjava.lang.Ex -
ception.printStackTrace()). Such a stack snapshot (obtained via an instance

27 http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Throwable.html

36 Tal Cohen and Joseph (Yossi) Gil

of Throwable , or any other JVM-specific means) can be examined in order to test for
cflow /cflowbelow conditions at runtime.

An alternative implementation scheme relies onThreadLocal 28 objects. The advice
application would result in aThreadLocal flag that will be turned on or off as var-
ious methods are entered or exited. At the target join point, the flag’s value will be
examined to determine if thecflowbelow condition holds, and the advice should be
executed. The one-instance-per-thread nature ofThreadLocal objects ensures that this
flag-based scheme will function properly in multi-threaded application.

6.4 The Core Aspects Library

ASPECTJ2EE’s definition includes a standard library of core aspects. Four of these
aspects were used in theACCOUNT example, as shown in Fig. 5.4. Here is a brief
overview of these four, and their effect on the advised classes:

1. The aspectj2ee.core.Lifecycle aspect (used to generated the root advised
class) provides a default implementation to the J2EE lifecycle methods. The imple-
mentations ofsetEntityContext() , unsetEntityContext , andgetEntity -
Context() maintain the entity context object; all other methods have an empty
implementation. These easily-available common defaults make the development of
EJBs somewhat easier (compared to standard J2EE development); the user-provided
AccountBean class is now shorter, and contains strictly business logic methods29.

2. The aspectj2ee.core.Persistence aspect provides a CMP-like persistence
service. The attribute-to-database mapping properties are detailed in the parame-
ters passed to this aspect in the deployment descriptor. This aspect advises some of
the lifecycle methods, as well as the attribute setters (for maintaining a “dirty” flag),
hence these methods are all overridden in the advised class.

3. Theaspectj2ee.core.Security aspect can be used to limit the access to various
methods based on user authentication. This is a generic security solution, on par with
the standard J2EE security service. More detailed security decisions, such as role-
based variations on method behavior, can be defined using project-specific aspects
without tangling security-related code with the functional concern code.

4. Finally, theaspectj2ee.core.Transactions aspect is used to provide transac-
tion management capabilities to all business-logic methods. The parameters passed
to it dictate what transactional behavior will be applied to each method. Transac-
tional behaviors supported by the J2EE platform include methods that must execute
within a transaction context, and will create a new transaction if none exists; meth-
ods that must execute within an existing transaction context; methods that are neutral
to the existence of a transaction context; and methods that will fail to run within a
transaction context. The list of methods that belong to each group is specified with a
pointcut parameter passed to this aspect.

28 http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ThreadLocal.html
29 The fact that the fields used to implement the attributes, and the concrete getter and setter

method for these attributes, appear inAdvAccount Lifecycle (in Fig. 5.4) stems from
the fact that this is the root advised class, and is not related to theLifecycle aspect per se.

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 37

7 Innovative Uses for AOP in Multi-Tier Applications

The use of aspects in multi-tier enterprise applications can reduce the amount of cross-
cutting concerns and tangled code. As discussed in Sec. 3, the core J2EE aspects were
shown to be highly effective to this end, and the ability to define additional aspects (as
well as alternative implementations to existing ones) increases this effectiveness and
enables better program modularization.

But ASPECTJ2EEalso allows developers to confront a different kind of cross-cutting
non-functional concerns: aspects of the software that are implemented in part on the
client and in part on the server. Here, the cross-cutting is extremely acute as the concern
is implemented not just across several classes and modules, but literally across pro-
grams. We call thesetier-cutting concerns. In the context ofASPECTJ2EE, tier-cutting
concerns are applied to the business methods of EJBs.

The notion of remote pointcuts was independently discovered by Nishizawa, Chiba,
and Tatsubori [33].

The remainder of this section shows that a number of several key tier-cutting concerns
can be represented as single aspect by using theremotecall join point designator. In
each of these examples, the client code is unaffected; it is the RMI stub, which acts as
a proxy for the remote object, which is being modified.

7.1 Client-Side Checking of Preconditions

Method preconditions [34] are commonly presented as a natural candidate for non-
functional concerns being expressed cleanly and neatly in aspects. This allows precon-
ditions to be specified without littering the core program, and further allows precondi-
tion testing to be easily disabled.

Preconditions should normally be checked at the method execution point, i.e., in the
case of multi-tier applications, on the server. However, a precondition defines a con-
tract that binds whoever invokes the method. Hence, by definition, precondition vi-
olations can be detected and flagged at the invocation point, i.e., on the client. In a
normal program, this matters very little; but in a multi-tier application, trapping failed
preconditions on the client can prevent the round-trip of a remote method invocation,
which incurs a heavy overhead (including communications, parameter marshaling and
un-marshaling, etc.).

Fig. 7.1 presents a simple precondition that can be applied to theACCOUNT EJB:
neitherwithdraw() nordeposit() are ever supposed to be called with a non-positive
amount as a parameter. If such an occurrence is detected, aPreconditionFailed -
Exception is thrown. Using two named pointcut definitions, the test is applied both
at the client and at the server.

In addition to providing a degree of safety, such aspects decrease the server load by
blocking futile invocation attempts. In a trusted computing environment, if the precon-
ditioned methods are invoked only by clients (and never by other server-side methods),
the server load can be further reduced by completely disabling server-side tests.

When using aspects to implement preconditions, always bear in mind that precon-
ditions test for logically flawed states, rather than states that are unacceptable from a

38 Tal Cohen and Joseph (Yossi) Gil

Fig. 7.1An aspect that can be used to apply precondition testing (both client- and server-
side) to theACCOUNT EJB.
public aspect EnsurePositiveAmounts {

pointcut clientSide(float amount):
(remotecall (public void deposit(float)) ||
remotecall (public void withdraw(float))) && args (amount);

pointcut serverSide(float amount):
(execution (public void deposit(float)) ||
execution (public void withdraw(float))) && args (amount);

before (float amount): clientSide(amount) || serverSide(amount) {
if (amount <= 0.0)

throw new PreconditionFailedException("Non-positive amount: " +amount);
}

}

business process point of view. Thus, preventing the withdrawal of excessive amounts
should be part ofwithdraw() ’s implementation rather than a precondition.

7.2 Symmetrical Data Processing

By adding code both at the sending and receiving ends of remotely-invoked methods,
we are able to create what can be viewed as an additional layer in the communication
stack. For example, we can add encryption at the stub and decryption at the remote
tie; or we can apply a compression scheme (compressing information at the sender,
decompressing it at the receiver); and so forth.

Consider an EJB representing a university course, with the methodregister() ac-
cepting aVector of names of students (String s) to be registered to that course. The
aspect in Fig. 7.2 shows how the remote invocation of this method can be made more
effective by applying compression. Assume that the classCompressedVector repre-
sents aVector in a compressed (space-efficient) manner. Applying this aspect to the
COURSEEJB would result in a new method,registerCompressed() , added to the
advised class. Unlike most non-public methods, this one would be represented in the
class’s RMI stub, since it is invoked by code that is included in the stub itself (that code
would reside in the advised stub for theregister() method).

Fig. 7.2 An aspect that can be used for sending a compressed version of an argument
over the communications line, when applied to theCOURSEEJB.
public aspect CompressRegistrationList {

around (Vector v): remotecall (public void register(Vector)) && args (v) {
CompressedVector cv = new CompressedVector(v);
registerCompressed(cv);

}

private void registerCompressed(CompressedVector cv) {
Vector v = cv.decompress();
register(v);

}
}

Compression and encryption can be applied not only for arguments, but also for return
values. In this case, the aspect should useafter () returning advice for both the
remotecall andexecution join points. Advice forafter () throwing can be used

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 39

for processing exceptions (which are often information-laden, due to the embedded call
stack, and would hence benefit greatly from compression).

7.3 Memoization

Memoization (the practice of caching method results) is another classic use for aspects.
When applied to a multi-tier application, this should be done with care, since in many
cases the client tier has no way to know when the cached data becomes stale and should
be replaced. Still, it is often both possible and practical, and usingASPECTJ2EEit can
be done without changing any part of the client program.

For example, consider a session EJB that reports international currency exchange
rates. These rates are changed on a daily basis; for the sake of simplicity, assume that
they are changed every midnight. The aspect presented in Fig. 7.3 can be used to enable
client-side caching of rates.

Fig. 7.3An aspect for caching results from a currency exchange-rates EJB.
public aspect CacheExchangeRates {

private static class CacheData { int year; int dayOfYear; float value; }

private Hashtable cache = new Hashtable();

pointcut clientSide(String currencyName):
remotecall (public float getExchangeRate(String)) && args (currencyName);

around (String currencyName): clientSide(currencyName) {
Calendar now = Calendar.getInstance();
int currentYear = now.get(Calendar.YEAR);
int currentDayOfYear = now.get(Calendar.DAY_OF_YEAR);

// First, try and find the value in the cache
CacheData cacheData = (CacheData) cache.get(currencyName);
if (cacheData != null) && currentYear = cacheData.year &&

currentDayOfYear == cacheData.dayOfYear)
return cacheData.value; // Value is valid; no remote invocation

float result = proceed (currencyName); // Normally obtain the value

// Cache the value for future reference
cacheData = new CacheData(); cacheData.year = currentYear;
cacheData.dayOfYear = currentDayOfYear; cacheData.value = result;
cache.put(currencyName, cacheData);

}
}

8 Conclusions, Open Questions, and Future Work

Shakeins are a novel, aspect-like, programming construct, with three distinguishing
characterization: explicit application semantics, configuration parameters, and restric-
tion on the changes to a class to be re-implementation only. We argued that the shakein
construct integrates well with the object model, by distinguishing the five facets of a
class: type, forge, implementation, mold and mill, and explaining how these can be
modified by shakeins. It was shown that if we adher to the principle that no variables of
shaked classes are allowed, then the construct can be implemented with current JVMs,
and using the existing inheritance model ofJAVA .

40 Tal Cohen and Joseph (Yossi) Gil

Shakeins enjoy the advantages of the parameterized notation of mixins, while offering
a simple answer to the accidental overriding problem. Thanks to the pointcuts semantics
of aspects, shakeins become more expressive than mixins in the sense that they can
“examine” the internals of their target classes. Conversely, thanks to the parameterized
semantics and the object model integration, shakeins simplify some of the more subtle
issues of aspects, including aspect inheritance, instantiation, and abstract aspects.

As an important application and prime motivation for actual use of this construct, we
presentedASPECTJ2EE, an AOP programming language, similar toASPECTJ, whose
aspects have a shakein semantics.ASPECTJ2EE shows that the shakeins semantics
integrates well with the current architecture of J2EE servers. The langauge makes it
possible to think of existing services as aspects, while unifying the deployment process
of J2EE with aspect weaving as in AOP. Also, the langauge shows that the shakeins
semantics allows existing services to be configured, and even applied multiple times.
Such benefits are not possible with plain aspects.

By using deploy-time weaving,ASPECTJ2EEallows the programmer’s code to be
advised without being tampered with. Programmers can define methods that will pro-
vide business functionality while being oblivious to the various services (transaction
management, security, etc.) applied to these methods. (It is thecode, not the program-
mers, that is oblivious to the non-functional concerns—an important distinction, no
doubt [35].) With the exception of thecall , we showed that all join point kinds can be
implemented using deploy-time weaving.

To the existing repertoire of join pointsASPECTJ2EEadds a new join point kind,
remotecall . This join point makes it possible to add to the familiar services provided
by EJB containers,ASPECTJ2EEaspects can be used to unscatter and untangle tier-
cutting concerns, which in many cases can improve an application server’s performance.
We discussed in particular interesting such services, including client side checking of
pre-conditions, symmetrical data processing, and memoization.

In using the shakeins semantics, aspects inASPECTJ2EEare less general, and have
a more defined target, than theirASPECTJ counterparts. Also, even though the same
aspect can be applied (possibly with different parameters) to several EJBs, each such
application can only affect its specific EJB target. Therefore, we expectASPECTJ2EE
aspects should be more understandable, and the woven programs more maintainable.

We believe thatASPECTJ2EEopens a new world of possibilities to developers of
J2EE applications, allowing them to extend, enhance and replace the standard services
provided by EJB containers with services of their own. EJB services can be distributed
and used across several projects; libraries of services can be defined and reused.

ASPECTJ2EEdoes not encompass the shakeins semantics in full. In particular, as-
pect application is external to the language and is specified by an XML deployment
descriptor file. The file format is such that shakeins can be applied to EJBs only, and
that un-shaked versions of such a bean are not available to clients.

This restriction demonstrates one of the open problems that this new construct opens,
namely,granularity of applicability. We argued that explicit application of shakeins to
classes contributes to the expressive power that programmers may need. We explained
why a global, system-wide application of aspects may lead to undesired results.

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 41

Still, as evident by theASPECTJ2EEexperience, it is necessary at times to apply
shakeins to a large number of classes. We need a mechanism that supports this need.
The answer may lie with a syntax and semantics for applying a certain shakein, or even
a family of shakeins, to an entire package, or to a class hierarchy.

Shakein also highlight the issue of using a class as a factory of its instances. It should
be possible to change the class implementation, as shakeins do, without modifying
client code. However, clients that use the class constructors directly to generate in-
stances, resist such changes.

Although there are design patterns (e.g.,ABSTRACT FACTORY and FACTORY

METHOD), and framework rules (e.g., as in J2EE) for dealing with this predicament,
we believe that a more systematic solution is possible. The appendix overviewsfacto-
ries, a mechanism which helps client code access only certain re-implementations of a
class. Factories provide similar functionality toASPECTJ2EE, but are implemented at
the langauge level, rather than by using external XML files.

Another challenging topic is that of a type system for shakeins, including a type sys-
tem for making and enforcing constraints on shakein parameters, and typing of shakein
composition. Such a type system should deal with the case that some of the configura-
tion parameters are specified at the time of composition.

References

1. Cohen, T., Gil, J.: AspectJ2EE = AOP + J2EE: Towards an aspect based, programmable and
extensible middleware framework. In Odersky, M., ed.: Proc. of the Eighteenth European
Conference on Object-Oriented Programming (ECOOP’04) 219–243

2. Cohen, T., Gil, J.: Distinguishing class from type with factories and shakeins. Submitted for
publication (2006)

3. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M., Irwin,
J.: Aspect-oriented programming. In Akşit, M., Matsuoka, S., eds.: Proc. of the Eleventh
European Conference on Object-Oriented Programming (ECOOP’97) 220–242

4. Soares, S., Laureano, E., Borba, P.: Implementing distribution and persistence aspects with
AspectJ. In: Proc. of the Seventeenth Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’02) 174–190

5. Hao, R., Boloni, L., Jun, K., Marinescu, D.C.: An aspect-oriented approach to distributed
object security. In: Proc. of the Fourth IEEE Symp. on Computers and Communications

6. Kim, H., Clarke, S.: The relevance of AOP to an applications programmer in an EJB envi-
ronment. Proc. of the First International Conference on Aspect-Oriented Software Develop-
ment (AOSD) Workshop on Aspects, Components, and Patterns for Infrastructure Software
(ACP4IS) (2002)

7. Choi, J.P.: Aspect-oriented programming with Enterprise JavaBeans. In: Proc. of the Fourth
International Enterprise Distributed Object Computing Conference (EDOC 2000) 252–261

8. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning, Green-
wich (2003)

9. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview
of AspectJ. In Knudsen, J.L., ed.: Proc. of the Fifteenth European Conference on Object-
Oriented Programming (ECOOP’01) 327–355

10. Bracha, G., Cook, W.R.: Mixin-based inheritance. In Meyrowitz, N.K., ed.: Proc. of the
Fifth Object-Oriented Programming Systems, Languages, and Applications / European Con-
ference on Object-Oriented Programming OOPSLA/ECOOP’90 303–311

42 Tal Cohen and Joseph (Yossi) Gil

11. Parnas, D.L.: Information distribution aspects of design methodology. In Freiman, C.V.,
Griffith, J.E., Rosenfeld, J.L., eds.: Proc. of the IFIP Congress 339–44

12. Kiczales, G., Mezini, M.: Aspect-oriented programming and modular reasoning. In Gruia-
Catalin Roman, William G. Griswold, B.N., ed.: Proc. of the Twenty Seventh International
Conference on Software Engineering (ICSE’05) 49–58

13. Gradecki, J.D., Lesiecki, N.: Mastering AspectJ: Aspect-Oriented Programming in Java.
Wiley (2003)

14. Scḧarli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: Composable units of behav-
ior. In Cardelli, L., ed.: Proc. of the Seventeenth European Conference on Object-Oriented
Programming (ECOOP’03) 248–274

15. Cardelli, L., Wegner, P.: On understanding types, data abstractions, and polymorphism. ACM
Computing Surveys17 (1985) 471–522

16. Bracha, G.: The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheri-
tance. PhD thesis, Department of Computer Science, University of Utah (1992)

17. Allen, E., Bannet, J., Cartwright, R.: A first-class approach to genericity. [36] 96–114
18. Ancona, D., Lagorio, G., Zucca, E.: Jam — a smooth extension of Java with mixins. In

Bertino, E., ed.: Proc. of the Fourteenth European Conference on Object-Oriented Program-
ming (ECOOP’00) 154–178

19. McDirmid, S., Flatt, M., Hsieh, W.C.: Jiazzi: New-age components for old-fashioned Java.
In: Proc. of the Sixteenth Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’01) 211–222

20. McDirmid, S., Hsieh, W.C.: Aspect-oriented programming with Jiazzi. [37] 70–79
21. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.M.: Design Patterns: Elements of Reusable

Object-Oriented Software. Professional Computing series. Addison-Wesley Publishing
Company, Reading, Massachusetts (1995)

22. Pichler, R., Ostermann, K., Mezini, M.: On aspectualizing component models. Software -
Practice and Experience33 (2003) 957–974

23. Bodoff, S., Green, D., Haase, K., Jendrock, E., Pawlan, M., Stearns, B.: The J2EE Tutorial.
Addison-Wesley Publishing Company, Reading, Massachusetts (2002)

24. Duclos, F., Estublier, J., Morat, P.: Describing and using non functional aspects in compo-
nent based applications. In: Proc. of the First International Conference on Aspect-Oriented
Software Development (AOSD 2002) 22–26

25. Mezini, M., Ostermann, K.: Conquering aspects with Caesar. [37] 90–100
26. Pawlak, R., Seinturier, L., Duchien, L., Florin, G., Legond-Aubry, F., Martelli, L.: JAC: an

aspect-based distributed dynamic framework. Soft. - Pract. and Exper.34 (2004) 1119–1148
27. Truyen, E., Vanhaute, B., Joosen, W., Verbaeten, P., Jørgensen, B.N.: Dynamic and selective

combination of extensions in component-based applications. In: Proc. of the Twenty Third
International Conference on Software Engineering (ICSE’01) 233–242

28. Popovici, A., Gross, T.R., Alonso, G.: Dynamic weaving for aspect-oriented programming.
In: Proc. of the First International Conference on Aspect-Oriented Software Development
(AOSD’02) 141–147

29. Suv́ee, D., Vanderperren, W., Jonckers, V.: JAsCo: an aspect-oriented approach tailored for
component based software development. [37] 21–29

30. Walker, R.J., Baniassad, E.L.A., Murphy, G.C.: An initial assessment of aspect-oriented pro-
gramming. In: Proc. of the Twenty First International Conference on Software Engineering
(ICSE’99) 120–130

31. Constantinides, C.A., Elrad, T., Fayad, M.E.: Extending the object model to provide explicit
support for crosscutting concerns. Software - Practice and Experience32 (2002) 703–734

32. Gosling, J., Joy, B., Steele, G.L.J., Bracha, G.: The Java Language Specification. Third edn.
Addison-Wesley Publishing Company, Reading, Massachusetts (2005)

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 43

33. Nishizawa, M., Chiba, S., Tatsubori, M.: Remote pointcut: a language construct for dis-
tributed AOP. In: Proc. of the Third international conference on Aspect-Oriented Software
Development (AOSD’04) 7–15

34. Meyer, B.: Object-Oriented Software Construction. Second edn. Prentice-Hall, Englewood
Cliffs, New Jersy 07632, Englewood Cliffs, New Jersy (1997)

35. Filman, R.E., Friedman, D.P.: Aspect-oriented programming is quantification and oblivious-
ness. In: OOPSLA 2000 Workshop on Advanced Separation of Concerns. ACM, Minneapo-
lis (2000)

36. Crocker, R., Jr., G.L.S., eds.: Proc. of the Eighteenth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’03), Anaheim, California,
USA, ACM SIGPLAN Notices 38 (11) (2003)

37. Proc. of the Second International Conference on Aspect-Oriented Software Development
(AOSD’03), Boston, Massachusetts, USA, ACM Press, New York, NY, USA (2003)

38. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-oriented
language. [36] 302–312

39. Grand, M.: Patterns in Java, Volume 1. John Wiley & Sons, USA (1998)

A Beyond ASPECTJ2EE: Factories

TheASPECTJ2EEexperiment indicates that the shakeins semantics integrates well with
current J2EE server architectures. However, the same experiment also led us to the con-
clusion that program modules should be provided with a better mechanism for control-
ling object instantiation. We therefore presentfactoriesas a new language construct,
providing each class with complete control over its own instance-creation process.

Factories are methods which return new class instances. Syntactically, a factory is a
method which overloads thenew operator with respect to a certain class. The language
extension requires no changes to the JVM.

The need for factories stems directly from anomalies that can be found in constructors
(in JAVA , C++, etc.). First, constructors are simultaneously static and dynamic: static,
since they are invocable without an instance; and dynamic, since they work on a specific
object. Second, it is mundane to see that constructors obey a static binding scheme, and
it takes just a bit of pondering to understand the difficulties that this scheme brings
about. If a classC ′ inherits fromC, thenC ′ should be always substitutable forC. An
annoying exception is made by constructor invocation sites in client code; these have to
be manually fixed in switching fromC to C ′.30

The confusion between static and dynamic binding penetrates even into the construc-
tor code itself, i.e., into the mill. Method invocation from the mill follows a static bind-
ing scheme in C++31; in JAVA and C#, however, dynamic binding is used. Neither
approach is without fault. Static binding can lead to illegal invocation of pure virtual
methods. Dynamic binding prevents methods, invoked from within the mill, from as-
suming that all fields were properly initialized. This leads, among other things, to diffi-
culties in implementing non-nullable types, as described by Fähndrich and Leino [38]:
during construction, fields of non-null types may contain null values.

30 Interestingly, the Gang of Four [21, p.24] place this predicament first in their list of causes
for redesign, saying: “Specifying a class name when you create an object commits you to a
particular implementation instead of a particular interface”.

31 Even forvirtual methods.

44 Tal Cohen and Joseph (Yossi) Gil

Unlike constructors, factories can be defined as either static or dynamic.
In studying constructors further, we can identify three steps in instances birth process:

(a) creation, in which the object’s actual type is selected, memory is allocated and
structured by the mold; (b)initialization, in which fields are set to their initial values;
and (c)setup, in which the mill is executed.

JAVA (as well as C++,C# and other languages) does not provide the programmer with
control over the creation step32.Yet, as the classical creational design patterns (e.g.,AB-
STRACT FACTORY, FACTORY METHOD, SINGLETON [21], andOBJECT POOL [39])
demonstrate, elaborate software systems require intervention in this step. The use of
home interfacesin J2EE, or a centralized Factory object in Spring, further underlines
this point: since the middleware environment requires control over the object instan-
tiation process, it forces a particular mechanism for obtaining instances, which makes
bean client code cumbersome. Creational patterns and home interfaces grant the pro-
grammer control over the creation step, by replacing constructor signatures from the
forge facet with a different, statically-bound, common method (e.g.,getInstance).

However, in contrast to most other patterns, the creational patterns cannot be imple-
mented in OO languages without revealing implementation details to the client. If class
T is implemented as aSINGLETON, then clients of this class cannot writenew T() and
expect the correct instance to be returned; rather, they must be explicitly aware of the
nonstandard creation mechanism. Further, to generalize object instantiation, middle-
ware frameworks often place arguments to the creation mechanism in a configuration
file. This extra-lingual resource is a source for potential errors that will only be detected
at runtime. Factories enable a clear-cut separation between creation and initialization
and setup, and make the use of external configuration files entirely optional.

A.1 Supplier-Side Factories

ClassDemo in Fig. A.1 realizes theSINGLETON design pattern, by overloadingnew
with the factory defined in lines 4–8.

This factory is invoked whenever theFig. A.1 A Singleton defined using a factory.
1class Demo {
2 private static Demo instance = null ;

4 public static new () {
5 if (instance == null)
6 instance = this ();
7 return instance;
8 }

10 Demo() {
11 // . . . setup code
12 }
13}

expressionnew Demo() is evaluated, in
class Demo or any of its clients. Note
that the factory is declaredstatic , which
stresses that it binds statically, and that
(unlike constructors) it has no implicit
this parameter. Examining the factory
body we see that it always returns the same
instance of the class. Thus, the clients can-
not know thatDemois a singleton, and will
not be affected if this implementation de-

cision is changed.
In general, a factory must either return a valid object of the class (instances of sub-

classes are ok), or throw an exception.33 A constructor call is required to generate such

32 Overloadingnew in C++ grants the programmer control over memory allocation, but not over
the kind of object to be created, nor the decision if an object has to be created at all.

33 Should the returned expression evaluate tonull , aNullPointerException is thrown.

Shakeins: Non-Intrusive Aspects for Middleware Frameworks 45

a new object; but simply writingnew Demo() would recurse infinitely. Instead, the
factory invokes the class constructor directly (line 6) with the expressionthis () .

Like constructors, factories are not inherited. Had classC ′ inherited a factorynew()

from its superclassC, then the expressionnew C ′() might yield an instance ofC,
contrary to common sense. (In contrast, the expressionnew C() canyield an instance
of theC ′, since a subclass is always substitutable for its superclass.)

Existing techniques for controlling the creation step, such as thegetInstance
method of aSINGLETON, are not protected from inheritance. Therefore, ifC is an old-
fashioned singleton, then the expressionC ′.getInstance() is valid—but returns
an instance ofC! This happens becausegetInstance is technically part of the type,
while conceptually being part of the forge.

A.2 Client-Side Factories

All examples so far defined factories in the same class on which the overload takes
place. Factories of this sort are calledsupplier-side factories. It is also possible to define
client-side factories, as demonstrated in Fig. A.2.

Line 2 in the figure starts the defini- Fig. A.2 A shakein-using factory.
1class Bank {
2 public static new Account(Client c) {
3 if (c.hasBadHistory())
4 return new Secure<LimitedAccount>(c);
5 // LimitedAccount is a subclass ofAccount

7 return new Secure<Account>(c);
8 }
9 // ... rest of the class

10}

tion of a factory. Unlike the previous
examples, this definition specifies the
returned type. The semantics is that the
definition overloadsnew when used for
creatingAccount objects from within
classBank . It is invoked in the eval-
uation of an expression of the form
new Account(c) (wherec is of type
Client or any of its subclasses) in this context. This factory chooses (lines 3–7) an
appropriate kind ofAccount depending on the particular business rules used by the
enclosing class.

Unlike supplier-side factories, client-side factoriesare inherited by subclasses. There-
fore, the factory from Fig. A.2 will also be used for evaluating expressions of the form
new Account(c) in subclasses ofBank .

It is easy to see how middleware applications using shakeins can benefit from fac-
tories. In Fig. A.2, the client-side factory always applies theSecure shakein to the
selected type before generating an instance. Thus, anyAccount created by aBank (or
a subclass thereof) will be aSecure d one. Should the developers desire that a given
shakeinS must be applied to all instances of some classc, then the supplier-side fac-
tory of c can be made to return only instances ofS 〈c〉. The supplier-side factories can
choose the particulars of which shakeins to apply based on configuration values set,
e.g., in deployment descriptors. This completely alleviates the need for home interfaces
for EJBs, while allowing EJB clients to obtain instances as simply as invokingnew.

