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Abstract

This work presents a suite of related programming constructs and technologies aimed at integrating
aspect-oriented programming(AOP) in the middleware frameworks used for enterprise application
development. These constructs includeshakeins(and theASPECTJ2EE language design based
on it), JTL (the Java Tools Language),factories, andobject evolution.

Shakeinsare a novel programming construct which, like mixins and generic classes, generates
new classes from existing ones in a universal, uniform, and automatic manner: Given a class, a
shakein generates a new class which has the same type as the original, but with different data and
code implementation. This thesis argues that shakeins are restricted, yet less chaotic, aspects. It
further claims that shakeins are well suited for the introduction of AOP into existing middleware
applications.

To demonstrate the applicability of shakeins to the middleware framework domain, we intro-
duce theASPECTJ2EE language which, with the help of shakeins and a newdeploy-timeweaving
mechanism, brings the blessings of AOP to the enterpriseJAVA (J2EE) framework. A unique ad-
vantage ofASPECTJ2EE, which is less general (and hence less complicated) thanASPECTJ, is
that it can be smoothly integrated into J2EE implementations without breaking their architecture.

Any aspect-oriented language or framework must provide developers with a mechanism for
specifying a set of join points, i.e., program locations that should be modified by relevant as-
pects. Such “pointcut” specifications are commonly expressed using queries written in a dedi-
cated, declarative language. We presentJTL, the Java Tools Language, as a new query language.
JTL provides a rich and powerful query-by-example mechanism which minimizes theabstraction
gap between queries and the program elements they match. We further show how JTL can be
extended to supportprogram transformations, going as far as making JTL an AOP language in its
own right.

Factoriesare presented as a new mechanism for controlling object instantiation, overcoming
anomalies that can be found in the construction mechanisms ofJAVA , C++, EIFFEL and similar
object-oriented languages. Factories (not to be confused with theFACTORY METHOD or AB-
STRACTFACTORY design patterns) provide classes with a complete control over their instantiation
mechanism. In particular, classes can enforce the application of shakeins to all instances, without
disturbing existing client code.

Finally, we allow shakeins to behave asdynamic aspects, i.e., aspects that can be applied
to an object or removed from it at runtime. Because applying a shakein to a class generates
a new class, we find that this implies the ability to change an object’s class at runtime—i.e.,
object reclassification is required. As it turns out, reclassification using shakeins is part of a more
general concept, which we callObject Evolution. Object evolution is a restriction of general
reclassification by which dynamic changes to an object’s class aremonotonic: an object may
gain, but never lose, externally-visible properties. We argue that there are many applications of
monotonic evolution in practical systems. The monotonicity property makes it easier to maintain
static type safety with object evolution than in general object reclassification.
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Chapter 1

Introduction

There’s no business like show business, but there
are several businesses like accounting.

— David Letterman

Multivac [15] and Shalmaneser [43] are but two examples of a recurring motif in 20th-century
science fiction: omnipotent computers that manage the everyday life of people. Although this
vision is yet to materialize, it is clear today that software systems do control many aspects of our
lives. Enterprise applications—the large-scale software programs used to operate and manage
large organizations—run government agencies, banks, insurance companies, financial institutes,
hospitals, etc. Their effect on our lives cannot be underestimated. Dependability, correctness,
maintainability, and other such just causes are not worn-out buzzwords in the context of enter-
prise applications: they are an essential, even crucial, requirement of these software monsters.
This dissertation is about better tools for developing enterprise applications, and better serving
these causes—perhaps even contributing to a smoother run of these clockworks ticking behind the
scenes of modern society.

An inherent paradox of enterprise applications is that they are soillusively simple. An enter-
prise application that runs a hospital is mostly concerned with the boring organization of records
and moving of information around, with little, if any, clever algorithmic manipulation of the data.
Likewise, the computations carried out in a banking application are almost always simple: calcu-
lating interest rates, or moving funds from one account to another.

For example, given a classAccount that represents a bank account, how complex can be a
method such astransfer , in charge of transferring funds from this account to another? The
following code fragment1 shows the entire relevantbusiness logic:

void transfer(Account other, float amount) {
if (balance < amount)

throw new InsufficientFundsException();
balance -= amount;
other.balance += amount;

}

. . . totalling in exactly four imperative statements.
Yet in practice, developing enterprise applications is a daunting task, due toorthogonal re-

quirementspresented by most of these applications, including uncompromising reliability de-
mands, unyielding security requirements, and complete trustworthiness that the applications must

1Here and henceforth, all code is in theJAVA [14] programming language, unless otherwise stated.
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exhibit. This is why a method such astransfer will probably look a lot more like the code
in Figure 1.1. Comprised of over a score of statements, even this version is greatly simplified
compared with real enterprise application code.

1 void transfer(Account other, float amount) {
2 SecurityContext ctx = Security.getContext();
3 User user = ctx.getCurrentUser();
4 if (user == null ) { // verify user is logged−in
5 Log.logSecurityViolation( "Invalid transfer attempt." );
6 throw new SecurityException( "No user is logged in." );
7 }
8 if (!user.canTransferFrom( this )) { // check credentials
9 Log.logSecurityViolation( "Invalid transfer attempt." );

10 throw new SecurityException( "Operation not allowed." );
11 }

13 Log.log( "Transferring from " + this + " to " + other);
14 Log.log( "Amount transferred: " + amount);

16 // Start the transaction (also locks the DB)
17 Transaction tx = getDbConnection().beginTransaction();

19 refreshFieldsFromDb(); // fetch most current field values (including balance)
20 other.refreshFieldsFromDb(); // ... for both objects

22 if (balance < amount) {
23 Log.logError( "Transfer not possible" );
24 tx.rollback(); // Abort transaction
25 throw new InsufficientFundsException();
26 }
27 balance -= amount;
28 other.balance += amount;

30 updateDbRecord(); // store updated balance in DB
31 other.updateDbRecord(); // ... for both objects

33 // Commit the transaction (and unlock the DB)
34 tx.commit();

36 Log.log( "Transfer complete" );
37 }

Figure 1.1: A transfer method catering to real-world considerations such as
logging, security, transactions and persistence (simplified)

Examining the figure, we see that the business logic in the method is dwarfed by code that
deals withnon-functional concerns, including:

• Security (lines 2–11),

• Logging (lines 5, 9, 13, 14, 23 and 36),
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• Data persistence (lines 19, 20, 30 and 31), and

• Transaction management (lines 17, 24 and 34).

The various concerns aretangledin a manner that bravely resists any attempt to separate them into
distinct, clear-cut methods; and the code for handling each non-functional concern ends up being
scatteredacross multiple, unrelated program modules. For example, a change of the transaction
management policy to prevent nested transactions requires updates to numerous business methods
such astransfer , rather than an update to a single program module.

Matters are further complicated by the fact that enterprise applications are often based on a
heterogeneous platform configuration, connecting various independent systems (calledtiers) into a
coherent whole. The various tiers of an enterprise application may include, e.g., legacy mainframe
servers, dedicated database servers, personal computers, departmental servers, and more.

The considerable complexity inherent in the development of enterprise applications, combined
with the staggering demand for their rapid development, initiated a series of component-basedmid-
dleware architectures, such as CORBA [221] and DCOM [172].Middleware frameworks, used
to implement such architectures, try to simplify enterprise application development by providing
developers with various pre-definedservices, such as security or load-balancing. These services
are often externally applied to the code, helping untangle the various concerns to a certain extent.
Modern middleware frameworks, such asJava 2, Enterprise Edition(J2EE) [203]2, provide a rich
set of such services, including most of the non-functional concerns discussed above, and then
some. These services are managed entirely by the framework; the programmer uses configuration
files to direct their behavior, and they are hardly (or not at all) reflected in the program source
code, which now focuses on business logic proper.

An alternative take on the problem of untangling and simplifying complex applications is the
recently-introduced methodology known asAspect-Oriented Programming(AOP) [151]. AOP
allows developers to encapsulate the code relevant to any distinct non-functional concern inas-
pectmodules. First and foremost in aspect-oriented technologies is the programming language
ASPECTJ [150], an aspect-oriented extension ofJAVA , though several other AOP languages and
tools are also in use [34, 45, 174, 207]. The immense complexity of enterprise software makes it
an appealing target for mass application of aspect-oriented development techniques [121,158].

While it seems that we now have two solutions to a single problem, it turns out that neither
solution, in its current form, is sufficient. The motivation for this work arises from the following
double argument:

1. The middleware framework approach has only limited and inflexible support for functional
decomposition. In cases where the canned solution is insufficient, application developers re-
sort again to a tangled and highly scattered implementation of cross-cutting concerns. Part
of the reason is that current middleware frameworks do not employ AOP in their implemen-
tation, and do not enable developers to decompose new non-functional concerns that show
up during the development process.

Section 1.1.1 elaborates on this claim.

2. Conversely,the approach taken by currently-available aspect-oriented tools does not scale
up to the demands of enterprise applications. AOP languages such asASPECTJ were con-
ceived, designed, and implemented with the belief that the composition of a system from its
aspects is animplicit process, carried out by some clever engine which should address the
nitty-gritty details. One of the chief claims of this work is that this presumption does not

2With the introduction of version 5, the J2EE framework was recently renamed “Java EE”.
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carry to enterprise applications. Complex systems are composed of many different compo-
nents in many different ways, but an automatic composition engine tends to make arbitrary
decisions, whose combined effect is more likely to break larger systems and disturb existing,
or legacy code.

This problem is examined in greater detail in Section 1.1.2.

A natural quest then is for a harmonious integration of middleware architectures and AOP,
combining the benefits of each to provide a coherent solution. This can be done by replacing
middleware services with more flexible aspects. Indeed, there were several works on an AOP-
based implementation middleware frameworks (e.g., [56,129,190,192,206,216,222]). However,
equally important is the quest to tame aspects and make them more manageable for large-scale
projects.

An overwhelming majority of previous work on the integration of aspects and middleware are
based on theJAVA programming language in general, and on J2EE, which is the standardJAVA

middleware framework. This work will follow in usingJAVA as our base programming language
and J2EE as a “reference” middleware framework, although the lessons learned here are applicable
to other languages and other middleware frameworks. The new approach and main contribution
of this paper is in drawing from the lessons of J2EE and its implementation to designa new
AOP technology, geared towards the generalized implementation of J2EE application servers and
applications within this framework, and in middleware frameworks in general.

At the heart of this new approach resideshakeins, a new programming construct that we
present as a more manageable alternative to aspects. UnlikeASPECTJ-style aspects, shakeins
can be applied safely to legacy code, because they do not break the object model, and their appli-
cation to other program modules is in a controlled and configurable manner. And, compared to
existing J2EE services, shakeins offergreater flexibilityas well asextensibility, since developers
can introduce their own shakein-based services.

1.1 Why Existing Solutions Are Broken

This sickness doth infect
The very life-blood of our enterprise.

— William Shakespeare,King Henry IV Part I,
Act IV, Scene I

Although both middleware frameworks and aspect-oriented programming try to address the prob-
lem of code complexity in enterprise applications, we argue that neither of the two, in its current
form, is sufficient. We now examine in some detail the limitations of each approach, concluding
in the need for integrating both into a coherent solution.

1.1.1 Limitations of the Services-Based Solution

Ideally, with modern middleware frameworks (and in particular with the J2EE framework), the
developer only has to implement the domain-specific business logic. This business logic is none
other than what the AOP community callsfunctional concerns. Variousservicesprovided by
the application server handle what are known asnon-functional concernsin AOP jargon. Yet
even though the J2EE framework simplifies enterprise application programming and reduces the
amount of scattered and tangled code, there are limits to such benefits. The reason is that although
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J2EE application servers (the programs that implement the middleware specification) are config-
urable, they are neitherextensiblenorprogrammable. Pichler, Ostermann, and Mezini [191] refer
to the combination of these two problems aslack of tailorability.

The application server isnot extensiblein the sense that the set of services it offers is fixed, in
other words, no new services can be introduced by the developer. Kim and Clarke [154] explain
why supporting logging in the framework would require scattered and tangled code. In general,
J2EE lacks support for introducing new services for non-functional concerns which are not part of
its specification. Among these concerns, we mention logging, memoization, precondition testing,
checkpointing, and profiling.

The application server isnot programmablein the sense that the implementation of each of
its services cannot be easily modified by the application developer. For example, most imple-
mentations of the J2EE persistence service rely on a rigid model for mapping data objects, called
Enterprise Java Beans(EJBs or “beans” for short), to a relational database. The service is then
useless in the case that data attributes of a bean are drawn from several tables; nor can it be used
to define read-only beans that are mapped to a database view, rather than a table. The persistence
service is also of no use when the persistent data is not stored in a relational database (e.g., when
flat XML files are used).3

Any variation on the functionality of the persistence service is therefore byre-implementation
of object persistence, using what is called “bean managed” persistence. This requires the introduc-
tion of callback methods (calledlifecycle methodsin J2EE parlance) in each bean. One lifecycle
method, for example, is invoked whenever the bean in memory should be updated with the version
stored in persistent storage, and conversely, a differently lifecycle method is invoked whenever the
persistent storage should be updated to reflect changes in the bean.

The implication is that the pure business logic of bean classes is contaminated with unrelated
I/O code. For example, the official J2EE tutorial [31, Chap. 5] includes many code examples with
a mixup, in the same bean, of SQL queries and aJAVA implementation of functional concerns.
At the same time, we find that the code in charge of persistence isscatteredacross all entity bean
classes, rather than being encapsulated in a single cohesive module.

Bean-managed persistence may also lead to codetangling. Suppose for example that persis-
tence is optimized by introducing a “dirty” flag for the object’s state. Then, each business logic
method which modifies state is tangled with code to update this flag.

Persistence is only one example; similar scattering and tangling issues rise with modifications
to any other J2EE service. In our financial software example, a security policy may restrict a client
to transfer funds only out of his own accounts. The funds-transfer method, which is accessible for
both clients and tellers, acts differently depending on user authentication. Such a policy cannot
be defined by setting configuration options, and the method code must explicitly refer to the non-
functional concern of security.

To summarize, whenever the canned solutions provided by the J2EE platform are insufficient
for our particular purpose, we find ourselves facing again the problems of scattered, tangled and
cross-cutting implementation of non-functional concerns. As Duclos, Estublier and Morat [88]
state: “clearly, the ‘component’ technology introduced successfully by EJB for managing non-
functional aspects reaches its limits”.

1.1.2 Limitations of Existing AOP Solutions

Plain aspects should make it easier toaddservices to middleware frameworks, if such frameworks
are re-engineered to use AOP. They should also make it simpler toreplaceexisting services with

3Persistent EJBs were replaced byentitiesin the EJB 3.0 specification [81] which is part ofJAVA EE 5. However,
entities are also limited to persistence in relational databases, and any alternative storage mechanism presents many of
the same challenges discussed here.
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alternative implementations. But of no less importance is the ability tointegratewith existing
program elements. When applied to existing middleware projects, an aspect-oriented solution
must respect legacy code, and take great care not to break it. The huge investment in existing code
within enterprise applications implies that new code must never be allowed to mistakenly alter
working parts of the program. Yet such unintentional changes are an inherent risk inASPECTJ-
style aspects.

Aspects inASPECTJ (and related languages) work bychanging existing code, often on a
program-wide scale. Aspects are advertised as a means for breaking the implementation into its
orthogonal concerns; accordingly, an aspect may replace or refine the implementation of a class,
and even change its type by introducing new members. Other mechanisms known to the devel-
opment community do just the same; the most familiar example, in the world of object-oriented
programming, is inheritance. However, unlike inheritance, the application of an aspect to a class
does not define a new class, but rather changes existing classesin situ. This change isdestructive,
since classes touched by aspects cease to exist in their original form; only the modified form ex-
ists, and in particular, there cannot be instances of the original classes in memory. This can have
dire effects on possibly unrelated parts of the program that rely on the current, tested behavior of
certain classes. The larger the project, the more likely are aspects to break legacy code; which is
why we believe thatcurrent aspect mechanisms do not scale up to enterprise applications.

Also unlike inheritance,ASPECTJ-style aspects can modify not only the directly-targeted
class, but also itsclients. Thus, even a simple aspect that appears to target a single, well-defined
class can in fact modify an unbound number of classes, implicitly. This is the case, for example,
when the aspect applies advice to field-access operations, or to method invocation operations; any
client that accesses such a field (or method) can now be modified. As the project grows in size,
it becomes increasingly difficult for the developers to have a clear concept of how the various as-
pects interact with the different classes. With enterprise applications, the simple question “which
aspects modify this class” cannot be answered except by dedicated tools that examine the code.
And when more than one aspect applies to the same class, the next self-evident question, “in what
order (or precedence) do aspects modify this class,” is similarly hard to answer.

The difference between aspects, which modify classes in an unbound and destructive manner,
and inheritance, is what we callThe Aspects-Inheritance Schism. It is discussed in greater detail
in Section 2.1.2. As we shall see, the integration of aspects into an object-oriented system raises
many questions and potential conflicts regarding the inclusion of these two mechanisms in a single
software project.

The shakeins construct is a proposal to resolve the aspect-inheritance schism by making as-
pects which are a restricted form of inheritance. Shakeins use aspect-like semantics to modify
existing classes; however, the application of a shakein is never global. A shakein is always applied
to a specific class, and generates a new class from it, much like inheritance. (In fact, the natural
approach for implementing shakeins is using subclassing.) The original classes are left unaltered,
so that the application of a shakein cannot inadvertently break unrelated code. Further, clients of
the target class are never modified by a shakein.

Shakeins present a form ofparameterized class modification(Section 2.3), and differ from
aspects in that their application isselectiveandnon-destructive. Because the application is not
global, developers cancontrol the shakein application orderon a case-by-case basis when multiple
shakeins are applied to the same class. Shakeins can also becomposedto create new shakeins.
Finally, their parameterized nature gives shakeins the flexibility required by middleware services,
without limiting developers to a pre-defined set of such services.
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1.1.3 Marrying J2EE with AOP

And they lived happily ever after.

— Proverbial fairy-tale ending

Despite the complexity of middleware systems, and despite the similarity between AOP and the
services that frameworks such as J2EE provide, it is evident that integrating this modern program-
ming technique into the frameworks that need it, faces reluctance. For example, let us examine the
manner in which some J2EE application server vendors have recently integrated minimal support
for aspects into their products:

• Release 4.0 of JBoss [144], an open-source application server which implements the J2EE
standard, supports aspects with no language extensions [45]. Aspects are defined asJAVA

classes which implement a designated interface, while pointcuts are defined in an XML
syntax. These can be employed to apply new aspects to existing beans without introducing
scattered code. Standard services however are not implemented with this aspect support.

• WebLogic Server [23], a J2EE application server developed and marketed by BEA Systems,
also includes support for aspects [33], using either the AspectWerkz [34] framework or the
ASPECTJ language. Here, too, aspects can be applied to existing beans without scattered or
tangled code, but they are not used to implement the core J2EE services.

• The latest version of the EJB standard (EJB 3.0) chose not to adopt a complete AOP solution,
but rather a rudimentary mechanism that can only be used to apply advice of a limited kind
to a limited set of methods in an inflexible manner. The basic services are not implemented
using such advise, but rather remain on a different plane, unreachable and non-modifiable
by the developer.

We see that in none of these solutions do aspects serve as a replacement for services, and none
implement the core services using aspects. We believe that this reluctance to integrate AOP into
J2EE is mainly a result of the scaling problems noted above.

In a proper and complete integration of the two approaches, each of the services that J2EE
provides should be expressed as an aspect. The collection of these services will be thecore as-
pect library, which relying on J2EE success, would not only be provably useful, but also highly
customizable. Developers will be able to add their own aspects (e.g., logging) or modify existing
ones, possibly using inheritance in order to re-use proven aspect code.

The resulting aspects could then be viewed as stand-alone modules that can be reused across
projects. Another implication is that not all aspects must come from a single vendor; in the current
J2EE market, all J2EE-standard services are provided by the J2EE application server vendor. If
developers can choose which aspects to apply, regardless of the application server used, then
aspects implemented by different vendors (or by the developers themselves) can all be used in the
same project.

In this research, we propose a new approach to the successful marriage of J2EE and AOP, in
which the design of a new AOP technology draws from the lessons of J2EE and its programming
techniques. Using shakeins, which are more tamed, controllable and scalable thanASPECTJ-style
aspects, we have designedASPECTJ2EE, which is an aspect-based J2EE framework.

1.2 Contributions and Outline

This section lists our contributions towards the goal of integrating aspects in middleware frame-
works, and lists, for each contribution, the relevant publications. The final part of this work,
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Chapter 7, includes our concluding remarks and suggests directions for further research.

1.2.1 Shakeins

Chapter 2 introducesshakeins, and makes the case that much more can be offered to the client
community by this novel programming construct, combining features of aspects with selected
properties of generics and mixins [38]. In a nutshell, a shakein receives a class parameter and
optional configuration parameters, and generates a new class which has the same type as the orig-
inal, but with different data and code implementation. In a sense, shakeins are restricted, yet less
chaotic, aspects. Like aspects, they can be used to modularize non-functional concerns without
tangled and scattered code. Unlike traditional aspects, shakeins preserve the object model, present
better management of aspect scope, and exhibit a more understandable and maintainable semantic
model.

Shakeins should make it possible not only toadd services, but also address two issues that
current J2EE users face:configurationof existing services andgreater flexibilityin their applica-
tion. Shakeins should also enjoy a smoother entrance into the domain because they can be made
to reusethe existing J2EE architecture, and because they can simplify some of the daunting tasks
(e.g., lifecycle methods) incurred in the process of developing EJBs.

Shakeins are more restricted than aspects in that there are limits to the change they can apply
to code. However, unlike aspects, shakeins take configuration parameters, which make it possible
to tailor the change to the modified class.

We argue that the explicit, intentional, configurable and parameterized application of shakeins
to classes makes them very suitable to middleware frameworks and enterprise applications.

Publications. Shakeins are the subject of the paperShakeins: Non-Intrusive Aspects for Mid-
dleware Frameworks[63], published in Transactions on Aspect-Oriented Software Development.

1.2.2 ASPECTJ2EE

Shakeins draw from the lessons of J2EE and its implementation. To demonstrate their applicability
to this domain, Chapter 3 introduces theASPECTJ2EElanguage, which shows how shakeins can
be used to bring the blessings of AOP to the J2EE framework.ASPECTJ2EEis geared towards the
generalized implementation of J2EE application servers and of applications within this framework.

As the name suggests,ASPECTJ2EEborrows much of the syntax ofASPECTJ. The semantics
of ASPECTJ2EEis adopted from shakeins, while adapting these toASPECTJ. The main syntactical
differences are due to the fact that “aspects” (shakeins) inASPECTJ2EEcan be parameterized.
However, inASPECTJ2EE, parameter passing and the application of shakeins to classes are not
strictly part of the language. They are governed mostly by external XML configuration files, a-la
J2EE deployment descriptors.

A distinguishing advantage of this new language is that it can be smoothly integrated into
J2EE implementations without breaking their architecture. This is achieved by generalizing the
existing process of binding services to user applications in the J2EE application server into a
noveldeploy-timemechanism of weaving aspects. Deploy-time weaving is superior to traditional
weaving mechanisms in that it preserves the object model, has a better management of aspect
scope, and presents a more understandable and maintainable semantic model. Also, deploy time
weaving stays away from specialized JVMs and bytecode manipulation for aspect-weaving.

Standing on the shoulders of the J2EE experience, we can argue that shakeins in general, and
ASPECTJ2EEin particular, are suited to systematic development of enterprise applications.
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Publications. ASPECTJ2EEwas introduced in the paperAspectJ2EE = AOP + J2EE: Towards
an Aspect Based, Programmable and Extensible Middleware Framework[61], included in the
proceedings of the 18th European Conference on Object Oriented Programming (ECOOP ’04).

1.2.3 JTL

Any aspect-oriented language or framework must provide developers with a mechanism for speci-
fying a set of join points, i.e., program locations that should be modified by relevant aspects. Such
specifications, known aspointcuts, can be stated in a procedural manner, but are more commonly
expressed using queries written in a dedicated, declarative language. Thus, we find that every
aspect-oriented technology includes a mechanism for querying language elements.

The best-known example for such a query language is the pointcut specification language
embedded inASPECTJ, which is also used elsewhere (e.g., in theCAESAR [171] programming
language). However, during our work on shakeins andASPECTJ2EE, we have come to realize
thatASPECTJ’s pointcut specification language has major shortcomings, and in particular limited
expressive power. Indeed, we were not the first to note these limitations, and numerous works
suggesting new program query languages have appeared in recent years, e.g., [92, 126, 128, 143,
187].

Our own shot at the program query problem is presented in Chapter 4:JTL, the Java Tools
Language (pronounced “Gee-tel”). JTL relies on a simply-typed relational database for program
representation, rather than an abstract syntax tree. The underlying semantics of the language is
restricted to queries formulated in First Order Predicate Logic augmented with transitive closure
(FOPL* ).

Special effort was taken to ensure terse, yet readable expression of logical conditions. The JTL
patternpublic abstract class , for example, matches all abstract classes which are pub-
licly accessible, whileclass { public clone(); } matches all classes in which method
clone() is public. To this end, JTL relies on aDATALOG-like [50] syntax and semantics, en-
riched with quantifiers and pattern matching which all but eliminate the need for recursive calls.

Like all code-query languages, JTL is not limited in use to specifying pointcuts in aspect-
oriented languages. Other applications include fixing type constraints (concepts [106, 124, 210])
for generic programming, specification of encapsulation policies, search tools in development
environments, a definition language for detecting code defects and “code smells” [100], the spec-
ification and detection of micro-patterns [110], and more.

We have further shown how a novel, yet simple, extension to JTL makes it possible to use
JTL for the general task ofprogram transformation. With this extension, JTL can be used for a
variety of program transformation tasks, such as the generation of database schema descriptions
for persistent classes, refactoring, and more. In particular, JTL can be used as an AOP language in
its own right, cheap and quick yet surprisingly powerful.

Publications. JTL was originally presented inJTL—the Java Tools Language[67], included
in the proceedings of the ACM SIGPLAN conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA ’06). The program transformation extensions are
described in the paperGuarded Program Transformations with JTL[65], currently under prepa-
ration. Additional uses of JTL, for the domain of reverse engineering (unrelated to AOP and not
further discussed in this work) appear in the paperJTL and the Annoying Subtleties of Precise
µ-Pattern Definitions[68], in the First International Workshop on Design Patterns Detection for
Reverse Engineering (DPD4RE ’06/WCRE ’06).
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1.2.4 Factories

The ASPECTJ2EEexperiment indicates that the shakein semantics integrates well with current
J2EE server architectures. However, the same experiment also led us to the conclusion that pro-
gram modules should be provided with a better mechanism for controlling object instantiation.
Therefore, in Chapter 5 we presentfactoriesas a new language construct, providing each class
with complete control over its own instance-creation process.

Factories are methods which return new class instances. Syntactically, a factory is a method
which overloads thenew operator with respect to a certain class. The language extension requires
no changes to the JVM.

The need for factories stems directly from anomalies that can be found in constructors (in
JAVA , C++ [209], etc.). To overcome these anomalies, the J2EE framework useshome ob-
jects [202, Chap. 5] to control object instantiation;JAVA EE 5 and Hibernate [22] use runtime
bytecode patching mechanisms; the Spring framework [146] uses a central factory object; and so
forth. All these devices share in common an attempt to wrestle control over object instantiation
from the programmer, so that standard classes can be replaced by augmented classes (with services
or aspects applied). Our suggested factories (not to be confused with theFACTORY METHOD or
ABSTRACT FACTORY design patterns [105]) allow any client of a class to control its creation in
an orderly manner. Different clients can obtain instances of the same class decorated in a differ-
ent manner, depending on each client’s need, usingclient-side factories. And with supplier-side
factories, the class itself can choose to provide only instances augmented in some specific manner.

The presentation of factories in Chapter 5 also includesa taxonomy of class features.

Publications. Factories were discussed as an appendix in the paper about shakeins [63]. The
paperBetter Construction with Factories[64], focused solely on factories and containing more
details, was accepted for publication in the Journal of Object Technology.

1.2.5 Object Evolution

A current topic of interest in aspect-oriented programming isdynamic aspects[148, 190, 192],
i.e., the ability to apply (or remove) different aspects to (from) a given object during the object’s
lifetime. Because applying a shakein to a class generates a new class, we find that dynamic aspects,
with regard to shakeins, imply the ability to change an object’s class at runtime—a facility known
asobject reclassification[86,218].

As it turns out, reclassification using shakeins is part of a more general concept, which we call
object evolution. Presented in Chapter 6, object evolution is a restriction of general reclassification
by which dynamic changes to an object’s class aremonotonic: an object may gain, but never lose,
externally-visible properties.

We argue that there are many applications of monotonic evolution in practical systems. The
monotonicity property makes it easier to maintain static type safety with object evolution than
in general object reclassification. Note that the monotonicity property may make evolution irre-
versible; this restriction is ameliorated by separating the notion of class from that of type, and
in the case of shakeins-based evolution, we find that the mechanism can support repeated state
changes, and even undo changes, under certain limitations. This allows object evolution to enable
the use of shakeins as dynamic aspects.

We also show that object evolution requires less changes to the host object-oriented program-
ming language and collects a reduced performance toll, compared to unrestricted reclassification
facilities, mostly because all descends in the inheritance hierarchy are necessarily monotonic.

We describe three concrete variants of evolution, relying on inheritance, mixins, and shakeins,
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and explain how any combination of these can be integrated into a concrete programming lan-
guage.

Publications. Object evolution is discussed in the paperThree Approaches to Object Evolu-
tion [62], currently under consideration for publication in the journal Science of Computer Pro-
gramming.
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Chapter 2

Shakeins

Shaken, not stirred.

— James Bond, inGoldfinger

As detailed in the Introduction (Section 1.1), we find that the addition of aspect-oriented pro-
gramming techniques to the realm of middleware frameworks faces reluctance. Even those few
application server vendors that do offer AOP extensions to their systems, such as JBoss (JBoss
Application Server) and BEA (WebLogic Server), do not implement the basic services as aspects.
These services remain on a different plane, unreachable and non-modifiable by the developer.

Plain aspects should make it easier toaddservices to J2EE, if re-engineered to use AOP. They
should also make it simpler toreplaceexisting services with alternative implementations. This
chapter that much more can be offered to the client community byshakeins, a novel programming
construct, combining features of aspects with selected properties of generics and mixins [38].
Shakeins should make it possible not only toaddservices, but also address two issues that current
J2EE users face:configurationof existing services andgreater flexibility in their application.
Shakeins should also enjoy a smoother entrance into the domain because theyreusethe existing
J2EE architecture, and because they simplify some of the daunting tasks (e.g., lifecycle methods)
incurred in the process of developing EJBs.

In a nutshell, a shakein receives a class parameter and optional configuration parameters, and
generates a new class which has the same type as the original, but with different data and code
implementation. In a sense, shakeins are restricted, yet less chaotic, aspects. Like aspects, they
can be used to modularize non-functional concerns without tangled and scattered code. Unlike
traditional aspects, shakeins preserve the object model, present better management of aspect scope,
and exhibit a more understandable and maintainable semantic model.

Shakeins are more restricted than aspects in that there are limits to the change they can apply
to code. However, unlike aspects, shakeins take configuration parameters, which make it possible
to tailor the change to the modified class.

We argue that the explicit, intentional, configurable and parameterized application of shakeins
to classes makes them very suitable to middleware frameworks and enterprise applications, based
of the following reasons:

• The architecture ofexistingmiddleware frameworks is such that in generating enterprise
application from them, the system architect may selectively use any of the services that the
framework provides. We have thata chief functionality of middleware frameworks is in the
precise management of non-functional concerns,and that this objective is well served by
the shakeins construct.
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• The services that a middleware framework offers are applicable only to certain and very
distinguishable components of the application, e.g., EJBs in J2EE. The need to isolate the
application of aspects is aggravated by the fact that enterprise applications tend to use other
software libraries, which should not be subjected to the framework modifications. For exam-
ple, a business mathematics library that an application uses for amortizing loan payments,
should not be affected by the underlying framework security management. Shakeins are
suited to this domain because of its fundamental property by whichcross cutting concerns
should not be allowed to cut through an entire system.

• Further, for modularity’s sake, it is important that these parts of the enterprise application,
which are external to the middleware, are not allowed to interact with the services offered by
the middleware. The fact shakeins are forbidden from creating new types helps inisolation
of the cross cutting concerns.

• To an extent, shakeins generalize existing J2EE technology, presenting it in a more system-
atic, programming language-theoretical fashion. While doing so, shakeins make it possible
to enhance J2EE services in directions that plain aspects fail to penetrate: The configura-
bility of shakeins makes it possible to generalize existing J2EE services. Explicit order of
application of shakeins to components adds another dimension of expressive power to the
framework. And by usingfactories(Chapter 5), such enhancements can be applied with a
minimal disturbance of existing code.

Chapter outline. Section 2.1 points at an inherent conflict between aspects and inheritance
in languages that combine the object- and aspect-oriented paradigms. Section 2.2 presents the
shakeins mechanism, and shows how it brings the benefit of AOP to OOP languages without
breaking the object model. Next, Section 2.3 lists the benefits of the parameterized class modifica-
tion approach offered by shakeins, and Section 2.4 compares shakeins with other AOP approaches
used in middleware frameworks. Section 2.5 concludes and provides a road map for the following
chapters.

2.1 Classes, Types, and Aspects

As explained above, a shakeinS takes an existing classc as input, along with optional configura-
tion parameters, and generates from it a new classS 〈c〉, such that thetypeof S 〈c〉 is thesameas
that ofc. Therealizationof this type inS 〈c〉may, and usually will, be different than inc. Further,
the process of generatingS 〈c〉 from c is automatic, universalanduniform. The generation pro-
cess is universal and uniform [48] because the same shakein can be applied to a potentially infinite
number of classes—as opposed to inheritance, which generates a new class from a given class in
an ad-hoc, class-specific manner (see Section 2.3 for details).

Section 2.1.1, below, explains what we mean by making the distinction between the type de-
fined by a class and its realization by the class definition. With this distinction, we explain in
Section 2.1.2 why the mechanisms of aspects1 and inheritance serve similar purposes but from
different, foreign, and hard-to-reconcile perspectives. Section 2.2 presents the shakeins mecha-
nism to resolve this schism.

2.1.1 The Five Facets of a Class

As early as 1971, Parnas [188] made the classical distinction between theinterfaceand thema-
terializationperspectives of a software component. It is only natural to apply this distinction to

1We refer here toASPECTJ-style aspects. Most other aspect-oriented languages are variants of this same style.
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class definitions inJAVA and other mainstream object-oriented languages.
We say that the interface and materialization arepurposesthat the class serves as a whole, and

characterize its elements by this purpose. (The purpose is but one of several dimensions used in
characterizing classes. Additional dimensions will be discussed in Chapter 5.)

Unlike the software components of the seventies, classes are instantiable. Accordingly, we
break the interface of a class into two facets: theforge and thetype. Similarly, we distinguish
between three facets in the materialization: theimplementationof the type, themill behind the
forge, and themold into which instances are cast.

More specifically, theforge of the class is the collection of operations that can be used to
create objects; thetype is the set of messages that these instances may receive, along with their
visibility specification; and theimplementationis the body of the methods executed in response
to these messages. There is a subtle distinction between the mill and the mold, which together
realize the class’s forge: Themold is the memory layout which instances of this class follow; it
consists solely of field definitions. Themill is the set of constructor bodies.

To understand these terms better, consider classPoint , shown in Figure 2.1.2 The type of

class Point implements Shape {
int x, y;

public Point(){
this (0,0);

}

public Point(Point other) {
this .x = other.x;
this .y = other.y;

}

public Point( int x, int y) {
this .x = x;
this .y = y;

}

public int getX() {
return x;

}

// continued

public int getY() {
return y;

}

public void setX( int x) {
this .x = x;

}

public void setY( int y) {
this .y = y;

}

public void moveBy( int dx,
int dy) {

x += dx;
y += dy;

}
}

Figure 2.1: ThePoint class definition

Point , containing methods such assetX , moveBy, and others, as well as the fieldsx andy ,
is shown in Figure 2.2(a). Superclasses and interfaces also add to the type; in this case, the type
of Point includes methods and fields inherited from on superclass, namelyObject , and one
interface,Shape . Each superclass and superinterface also adds an upcast operator.

We see that the type includes the signature of all non-private fields and methods of the
class. Thus what we call type here is in fact the class’s structural type, to whichJAVA applies a
name, making it a nominal type.

The type does not include details such as a specification of the order by which methods may
be invoked, pre- and post-conditions, or other classes with which the class may interact while

2A similarly structured class served as the running example in Kiczales and Mezini’s [152] work on modularity and
aspects.
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implementing each method. All these may be thought of as the class’sprotocol.

int x, y;
public int getX();
public int getY();
public void setX( int );
public void setY( int );

// From Shape:
public void moveBy( int , int );

// From java.lang.Object:
public boolean equals(Object);
public int hashCode();
// ... etc.

// Upcast operations:
public (Shape)Point;
public (Object)Point;

(a) The type ofPoint .

public Point( int x, int y);
public Point();
public Point(Point other);

(b) The class’s forge.

int x 32 bits

int y 32 bits

...
Fields inherited fromObject

...

...
Hidden fields added by the JVM

...

(c) The class’s mold.

Figure 2.2: The type, forge, and mold ensuing from the definition of classPoint

The forge ofPoint , depicted in Figure 2.2(b), includes the signatures of the three con-
structors provided by the class: the zero-arguments constructor (Point() ), the copy constructor
(Point(Point) ), and the variant that specifies the initial coordinates (Point( int , int ) ).

The mold for creating new objects is defined by the collection of all fields in this class and
all of its supertypes. Specific languages or language implementations can include hidden fields
in the mold, such as run-time type information, the Virtual Method Table [93] used in C++, etc.
Figure 2.2(c) presents the mold defined by classPoint . It includes fields defined inPoint as
well as any fields inherited from superclasses, along with any hidden field added by the JVM.

Finally, theimplementationis the body of the methods defined by the class or any of its super-
classes, while themill is the body of the constructors defined in this class.

2.1.2 The Aspects-Inheritance Schism

A key feature of OOP is the ability to define new classes based on existing ones. The five facets
described above can be used for explaining inheritance inJAVA and similar languages: Inheritance
extendsthe type, mold and implementation of a class. By means of overriding, inheritance also
makes it possible toreplaceor refineparts or all of the implementation. Inheritance can also refine
the type in languages that allow variance. The mold, however, cannot be refined.

Interestingly, inheritance in mainstream programming languagesrecreatesthe forge from
scratch, since constructor signatures are not inherited. Therefore, inheritance is allowed to make
arbitrary and incompatible changes to the forge facet of a class. Still, the mill can only be refined,
since constructors must invoke inherited versions.

Examining the notion of aspects from the perspective of modifications to the five facets, we see
that they offer a similar repertoire of modifications. Aspects are advertised as means for breaking
the implementation into its orthogonal concerns; accordingly, an aspect may replace or refine the
implementation. In some aspect-oriented languages, aspects can alsoextendthe type and the mold,
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by introducing new members into a class. (This is known asmember introductionin ASPECTJ.
Conceptually, fields in an aspect that has per-object instantiation may also be viewed as fields
added to the base object’s mold.) Similarly, again using member introduction, aspects canextend
the forge, but they cannot replace it.

Still, unlike inheritance, the application of an aspect does not define a new type, nor does it
introduce a new mold or a new implementation; it changes the mold and the implementation of
existing classesin situ. And, while member introduction makes it possible to modify the type of
classes, it does not introduce anew type—because classes touched by aspects cease to exist in
their original form; only the modified form exists. In particular, there cannot be instances of the
original class in memory.

The similarity of aspects and inheritance raises intriguing questions pertaining to the inter-
action between the two mechanisms: Does the aspectualized class inherit from its base version?
May aspects delete fields from the mold, or modify it by changing the type of fields? Likewise, can
methods be removed from the type? Can their signature be changed? How does the application of
an aspect to a class affect its subclasses?

The interaction of join points with inheritance raises still more questions. InASPECTJ, two
different join point types can be used to apply an advice to method execution: Theexecution
join point places an advice at the method itself, whereascall places the advice in at the method’s
client, i.e., at the point of invocation rather than at its target. Now, suppose that classB inherits
from A, with or without overriding methodm() . Then, does the pointcutcall (A.m()) ap-
ply to an invocation of methodm() on an object whose dynamic type isB? Conversely, does
the pointcutcall (B.m()) ever apply if classB does not define a methodm() , but inherits it
from A? (These confusing semantics are analyzed in detail by Barzilay, Feldman, Tyszberowicz,
and Yehudai [21].)

The reason that all these questions pop up is that aspects were not designed with inheritance
in mind. The original description of aspects [151] did not dedicate this new construct to OOP
languages. Similarly, the founding fathers of OOP did not foresee the advent of AOP, and in many
occasions inheritance was used for some of the purposes AOP tries to serve. We witness what may
be calledThe Aspects-Inheritance Schism.

Gradecki and Lesiecki [121, p. 220] speculate that“mainstream aspect-oriented languages
. . . will possess simpler hierarchies with more type-based behavior defined in terms of shallow,
crosscutting interfaces.”In other words, these two authors expect that this schism is resolved by
programmers abandoning much of the benefits of inheritance. Our suggestion is that the resolution
will be a re-definition of aspects cognizant of the class facets and of inheritance.

2.2 Shakeins as Class Re-Implementors

The shakeins construct is a proposal to resolve the aspect-inheritance schism by makingaspects
which are a restricted form of inheritance. Like inheritance, shakeins generate a new class from
an existing one. Yet unlike inheritance, they cannot extend the class type. In fact, they cannot
change the base class type at all.

Thus, we can say thatshakeins make are-implementationof a class.
Shakeins allow only specific changes to the class facets. Programming constructs which re-

strict one or more facets are not strange to the community: anabstract classis a type, a partial
(possibly empty) implementation, and an incomplete mold.Interfacesare pure types, with no
implementation, forge, mill or mold. Also,traits [199] have a fragment of a type and its imple-
mentation, but no forge, mill or mold.

Another familiar notion on which shakein rely is that of multiple implementations of the
same (abstract) type, as manifested e.g., in the distinction between signatures and structures in
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ML [175]. The major difference is, however, that a shakein assumes an existing implementation
of a class, which it then modifies.

For concreteness, Figure 2.3 shows shakeinDisp lay Updating , that can be used to modify
classPoint so that the display is refreshed after each coordinate change. The shakein works on

shakein DisplayUpdating {
pointcut change() :

execution (setX( int )) || execution (setY( int )) ||
execution (moveBy( int , int ));

after () returning : change() {
Display.update();

}
}

Figure 2.3: A shakein for updating the display after each change to aPoint

any class that defines methodssetX( int ) , setX( int ) , and/ormoveBy( int , int ) . The
desired effect is obtained by applying this shakein toPoint . In the spirit of previous works
that approached the display-updating aspect example [55,152, 153], we assume that the there is a
single, system-wide display which is globally accessible.

The syntax used to define shakeins (here and in the following examples) is anASPECTJ-like
syntax, using the keywordshakein rather thanaspect . However, other syntactical choices can
be made if shakeins are integrated into other programming languages, and in particular, Chapter 4
will discuss a suggested change to the pointcut specification language used here.

Figure 2.4 shows theConfined shakein. This shakein confines the range of valid values

shakein Confined {
pointcut update( int v) :

( set ( int x) || set ( int y)) && args ( int v);

before ( int v): update(v) {
if (v < 0)

throw new IllegalArgumentException();
}

}

Figure 2.4: A shakein for limiting the valid range ofPoint ’s coordinates

for x and y to positive integers only. It is applicable to classPoint , or any class withint
fieldsx andy .3

In the process of re-implementing a class, a shakein may introduce methods and fields to
the class. Such members must beprivate , accessible to the shakein but not to the external
world (including inheriting classes, and classes in the same package). The reason is that such
accessibility would have implied a change to the class type, which is not allowed to shakeins.

We will write Confined<Point> to denote the application of shakeinConfined to
Point , andDisplayUpdating<Confined<Point>> for the application of shakeinDisp -

3While the update presented by this shakein can cause methods that updatex andy to throw an exception, it is an
unchecked (“runtime”) exception, and therefore it does not alter the methods’ signature—a forbidden change, since it
implies an update to the class’s type.
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lay Updating to the result, etc.
The re-implementation property implies that although a classS 〈c〉 can (and usually will) be

instantiated, it is not possible to definevariablesof this class. Instances ofS 〈c〉 can be freely
stored in variables of typec, as in the followingJAVA -like pseudo-code:

c var = new S 〈c〉 ();

In thePoint example, we may then write:

Point p = new DisplayUpdating<Point>();

The type-preservation property of shakeins sets a clear semantics for the interaction of these
with inheritance. As it turns out, the application of shakeins does not modify or break the inheri-
tance structure. More formally, letC1 andC2 be two classes, and suppose thatC2 inherits fromC1.
Then, we can writeC2 ≺ C1 to denote the fact that the type ofC2 is a subtype ofC1. Let S be a
shakein. Then, we can also writeC1 ' S 〈C1〉 to denote the fact that the type ofS 〈C1〉 is the same
asC1. Similarly, C2 ' S 〈C2〉. By substitution, we can obtainS 〈C2〉 ≺ S 〈C1〉, C2 ≺ S 〈C1〉,
andS 〈C2〉 ≺ C1. In fact, we have

Proposition 1. For all classesC1 and C2 such thatC2 ≺ C1, and arbitrary
shakeinsS andS′, S′ 〈C2〉 ≺ S 〈C1〉.

In our running example, shakeinDisp lay Updating can be applied to any subclass of
Point . If classColor Point extendsPoint , then the type ofDisp lay Updating <Color -
Point> is a subtype ofPoint .

Figure 2.5 makes a graphical illustration of Proposition 1. It depicts a simple base class hier-
archy consisting of classesC1, C2, C3, andC4, whereC4 ≺ C2 ≺ C1, andC3 ≺ C1. There are
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Figure 2.5: A class hierarchy subjected to shakeins. Each round-cornered box
represents a type; each internal rectangle represents a class that im-
plements this type
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also three shakeins,Sa, Sb andSc, where shakeinsSb andSc are implemented usingSa, and each
of the shakeins is applied to each of the classes.

We see in the figure that for alli = 1, . . . , 4, the type of classCi is the same as its three re-
implementationsSa 〈Ci〉, Sb 〈Ci〉 andSc 〈Ci〉. This common type is denoted by a round-cornered
box labeled “TypeCi”. As shown in the figure, the subtyping relationship is not changed by
re-implementations; e.g., the type of classSa 〈C4〉 is a subtype ofSb 〈C2〉’s type.

The figure should also make it clear how the type system of shakeins can be embedded in a
standard JVM. Each shakein application results in the generation of aJAVA class, which com-
piles into a distinct.class file. Both vertical dashed arrows, representing type inheritance, and
horizontal arrows, representing shakein application, are translated to class inheritance, i.e., an
extends relationship between classes.

To see why Prop. 1 holds in this embedding, recall that the program does not have any variables
(including parameters and fields) of the shakein classes: All instances of classS 〈c〉 are stored in
variables of typec. In the figure, instances of typeSa 〈C4〉 are stored in variables of typeC4,
which is upcastable to typeC2.

2.3 Parameterized Class Modification

Double, double, toil and trouble;
Fire burn, and Cauldron bubble.

— William Shakespeare,The Tragedy of Macbeth,
Act IV, Scene I

Aspects are distinguished from inheritance in that they can be automatically applied to multiple
classes. In contrast, a subclass is defined with respect to a specific superclass; the nature of
the extension (both of the interface and the materialization) is specific to every such instance. To
apply the same kind of change to multiple base classes, the details of the change must be explicitly
spelled out each time. Thus, although inheritance is a kind of what is known in the literature as
universal polymorphism[48], it is not auniform mechanism; each inheriting class modifies the
base class in anad-hocmanner.

It is therefore instructive to compare aspects to the parameterized version of inheritance, i.e.,
mixins [38]. A mixin, just like an aspect, makes it possible to apply the same kind of change
(expressed in terms of inheritance) to multiple base classes.

Mixins were invented with the observation that there is a recurring need to extend several
different classes in the exact same manner. They allow programmers to carry out such a change
without rewriting it in each inheriting class. In languages such asMODULA-π [37] or JAM [8], the
repeating change to the base class can be captured in a mixinM , which, given a classc, generates
a classM 〈c〉 such thatM 〈c〉 inherits fromc. In languages with first-class genericity, such as C++
andNEXTGEN [5], mixins can be emulated by writing, e.g.,

template <typename c> class M: public c { ... }

in C++, or

class M<c> extends c { ... }

in NEXTGEN.
Generic structures are also a kind of a universal polymorphism, but their application isuniform.

The above emulation of mixins by generics makes it clear that mixins are bothuniversaland
uniformkind of polymorphism.
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Here, we enrich and simplify the aspects approach with ideas drawn from the work on mixins.
We argue that the seemingly pedestrian notation of mixins,M 〈c〉, hides much expressive power.
The reason is that parameter passing, a familiar mechanism of programming languages, exhibits
several useful features which are missing in the current implicit and declarative mechanism of
aspect application. These features are:

1. Selective Application.After a shakein was defined, it can be applied to selected classes
without affecting others. In contrast, aspects have essentially two kinds of components:
global advices, which, as the name suggests, apply to all classes in the universe of discourse;
andtailored advices, which apply to a pre-defined list of specific classes.

Thus, if we wish to apply a given aspect only to certain classes, we must use a tailored
advice that will have to be modified each time a new class joins the list.4

Conversely, an aspect with a global advice can affect an unbounded number of classes,
potentially including classes that did not exist when the aspect was defined. This is often a
desired benefit. However, it is not possible in general to change the applicability of an aspect
without modifying it: a programmer introducing a new class into a project cannot choose to
“opt out” and leave his class unaffected by existing aspects, even if he deems some of these
aspects inappropriate for that specific class.

The only way to prevent this effect is to modify the aspect itself, so that its advices will
exclude the new class. If the aspect originated at an off-the-shelf library, its sources unavail-
able, then even this remedy will not be possible.

For example, Figure 2.6(a) shows an attempt to implement theConfined shakein from
Figure 2.4 as anASPECTJ aspect using a global advice. The problem with this attempt is

aspect Confined {
pointcut update( int v) :

( set ( int *.x) ||
set ( int *.y))
&& args ( int v);

before ( int v): update(v) {
... // Perform confinement test

}
}

(a) Using a global advice

aspect Confined {
pointcut update( int v) :

( set ( int Point.x) ||
set ( int Point.y))
&& args ( int v);

before ( int v): update(v) {
... // Perform confinement test

}
}

(b) Using a tailored advice

Figure 2.6: Two attempts to define theConfined shakein as anASPECTJaspect

that it could inadvertently affect unrelated classes withint fields namedx and/ory , such
as the standard-library classjava.awt.Event . Figure 2.6(b) attempts to do the same
using advice tailored specifically forPoint . But now, if wedo want the aspect to apply to
any other class, we must explicitly modify its pointcut definition, which can quickly become
unwieldy.

2. Non-destructive Application.The application of a shakeinS to a classc does not destroyc,
and both classesS 〈c〉 andc can be used. Instances of both may reside in memory simulta-
neously and even interact with each other.

4Abstract pointcuts can also be used to this end. This construct is discussed below in Section 2.3.3.
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In contrast, in most AOP languages, the original class cannot be used once its aspectualized
version was generated. For example, if we apply a caching aspect to some class, we cannot
simultaneously use a non-caching version for accessing a local service.

3. Explicit and Flexible Ordering.ShakeinsS1 andS2 can be applied in any order, to generate
eitherS1 〈S2 〈c〉〉, S2 〈S1 〈c〉〉, or both. Further, it is possible to apply the same mixins in a
different orders to different class.

In comparison, the order of application of aspects, i.e., theaspect precedenceas it called
in the AOP jargon, is a global system property. It is practically impossible, for example, to
cause classA to log its operations before security checks are applied, while classB logs its
operations only after such checks are performed. With shakeins, this is achievable simply
by generatingLog<Security<A>> alongsideSecurity<Log<B>> .

4. Composition. Shakeins, like mixins, can be conveniently thought of as functions, and as
such it makes sense to compose them. In some languages supporting mixins one can define
a new mixin by writing, e.g.,M := M1 ◦ M2, with the obvious and natural semantics.
Languages with shakein support can offer a similar syntax for shakein composition.

In contrast, the declarative nature of aspects complicates the semantics of their composi-
tion, to the extent that aspect inheritance is all but prohibited inASPECTJ and most related
languages.

5. Configuration Parameters. It is straightforward to generalize mixins (and shakeins) so
that they take additional parameters which control and configure the way they extend (or
re-implement) the base class. In the templates notation, one can write for example:

template <typename c, char *log_file_name>
class Log: public c {

// Log into filelog file name
}

Again, the implicit application and the declarative nature of aspects makes the notion of con-
figuration awkward. For example, making two subsystems log their operations in different
files is not easy with a single, non-parameterized aspect.

6. Repeated Application.One can writeS 〈S 〈c〉〉, but it is not possible to apply the same
aspect twice to a class. While it makes little sense to apply most shakeins more than once, in
some cases (especially with parameterizes shakeins) the notion is very natural; for example,
a construct like

Log[ "pre.log" ]<Security<Log[ "post.log" ]<c>>>

will generate two log files, one before and one after any security checks imposed by the
Security shakein.

7. Parameter Checking.It is useful to declare constraints to the parameters of shakeins, and
apply (meta-) type checking in passing actuals to these. Languages such asJAM offer this
feature in mixins; for example, a mixin could require that it is applied only to classes that
implement thejava.io.Serializable interface. We see no equivalent in the domain
of aspects.

Evidently, these differences are not a coincidence. AOP languages were designed with the
belief that the composition of a system from its aspects is an implicit process, carried out by
some clever engine which should address the nitty gritty details. The developers throw all the
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components, including both classes and aspects, into the big cauldron that is the program; and
these are stirred by the AOP engine to generate the resulting product (see Figure 2.7). One of
the chief claims of this work is that this presumption does not carry to middleware applications,
especially when we wish to preserve the investment in existing architectures. Complex systems
are composed of many different components in many different ways. An automatic composition
engine tends to make arbitrary decisions, whose combined effect is more likely to break larger
systems, especially when legacy code is involved. Our support for this claim is by the detailed
description of the aspect oriented re-structuring of J2EE, in the form of theASPECTJ2EElanguage
(Chapter 3).

Figure 2.7: Generating software systems by mixing classes andASPECTJ-style
aspects

Shakeins are similar to mixins in that they take parameters. As such they are auniversal
anduniform polymorphic programming construct. Shakeins are similar to generic structures in
that they may take multiple parameters. However, whereas both mixins and generics suffer from
their obliviousand inflexiblemode of operation, i.e., they are unable to inspect the details of the
definition of the base-, or argument- class, and generate specific code accordingly. As a result,
mixins fail in tasks such as re-generating constructors with the same signature as the base, or
applying the same change to multiple methods in the base class. Similar restrictions apply to
generics. In contrast, shakeins use the same pointcut mechanism as aspects, and are therefore
highly adaptable.5

Another issue that plagues mixins (and generics that inherit from their argument) is that of
accidental overloading[8]. Shakeins overcome this problem using an automatic renaming mech-
anism, which is possible since no shakein-introduced member is publicly accessible.

5The component-system Jiazzi [166] uses a mixin-like mechanism to implementopen classes, which in turn can be
used for implementing cross-cutting concerns [167]. Jiazzi components are also parameterized, taking packages (sets
of classes) as arguments. However, Jiazzi’s open class approach differs from shakeins in that the base class is modified,
both in its implementation and in its type; and such changes are propagated to all existing subclasses.
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The chief parameter of a shakein is the class that this shakein re-implements. The definition of
a shakein does not need to name or even mention this parameter, since it is implicit to all shakeins,
in the same way thatJAVA methods have athis parameter. We will nevertheless write this
parameter occasionally, e.g., when we wish to perform parameter checking upon it. Additional
parameters, if they exist, are used to configure or direct the re-implementationNote that aspects
can also be thought of as taking implicit parameters; however, shakeins are distinguished from
aspects in that their invocation isexplicit, and that aspects take no configuration parameters.

More formally, a shakeinS takes an existing classc as input along with other configuration
parameters,P1, . . . ,Pn, n > 0, and generates from it a new classS[P1, . . . ,Pn] 〈c〉, such that the
typeof S[P1, . . . ,Pn] 〈c〉 is thesameas that ofc. We use square brackets for passing the config-
uration parameters while angular brackets are used for passing classc, the mandatory parameter
representing the class to be re-implemented. Thus,S[P1, . . . ,Pn] is the configured shakein, which
can then be applied to the target.

Figure 2.8 shows how configuration parameters can enhance the functionality of shakein
Confined (first shown in Figure 2.4). As shown in the figure, the updated version ofConfined

shakein Confined[ int minX, int maxX, int minY, int maxY] {
pointcut updateX( int v) : set ( int x) && args ( int v);
pointcut updateY( int v) : set ( int y) && args ( int v);

before ( int v): updateX(v) {
if ((v < minX) || (v > maxX))

throw new IllegalArgumentException();
}

before ( int v): updateY(v) {
if ((v < minY) || (v > maxY))

throw new IllegalArgumentException();
}

}

Figure 2.8: A parameterized version ofConfined (from Figure 2.4)

is configured by fourint parameters, specifying the minimal and maximal values for thex andy
coordinates of its target class. To obtain an instance ofPoint restricted to the[0, 1023]× [0, 767]
rectangle, one can write

Point p = Confined[0,1023,0,767]<Point>(511,383); //Initially at center.

Like generic structures, shakeins can also accepttypesas configuration parameters. These can
be used, for example, to define method arguments, or new (private) fields, using parametric types.
In fact, the first parameter to a shakein isalwaysa type: this is the existing class which the shakein
should re-implement.

2.3.1 Pointcut Parameters

A special kind of configuration parameter is the pointcut expression. Figure 2.9 shows a revised
version of theDisp lay Updating shakein, which uses a pointcut parameter. The parameter
change denotes the join points whose execution necessitates a display update. An actual value
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shakein DisplayUpdating [ pointcut change()] {
after () returning : change() {

Display.update();
}

}

Figure 2.9: A parameterized version ofDisp lay Updating (from Figure 2.3),
accepting a pointcut specification as a parameter

of this parameter specifies a concrete such set. For example, the following:

DisplayUpdating[
execution (setX( int )) || execution (setY( int ))

|| execution (moveBy( int , int )
]<Point>

is an application ofDisp lay Updating to classPoint . The parameter value is a pointcut that
matches all methods inPoint which should cause a display update.

Consider now Figure 2.10, showing the classLine , which is implemented using twoPoint s.

class Line {
private Point a, b;

public Line(Point from,
Point to) {

a = new Point(from);
b = new Point(to);

}

// continued

public moveBy( int x, int y) {
a.moveBy(x,y);
b.moveBy(x,y);

}

}

Figure 2.10: ClassLine

An application ofDisp lay Updating to Line is by writing

DisplayUpdating[ execution (moveBy( int , int ))]<Line> .

This re-implementation ofLine does not suffer from the redundant display updates prob-
lem [152], which would have occurred in traditional AOP, i.e., display updates occurring both in
the implementation ofLine and its encapsulatedPoint s. Thanks to the non-destructive seman-
tics of shakeins, these twoPoint s can be of the non-updating variant. This does not prohibit
otherPoint s in the system (which are not part ofLine s) to be display-updating.

In contrast, an aspect based solution to this problem should check that nochange advice is
in effect before executing this advice. This checking must be carried outat runtime, by examining
the runtime stack with what is known inASPECTJ as acflowbelow condition.6

2.3.2 Shakein Composition and Repeated Application

Examining Figure 2.8, we see that theConfined shakein contains a certain amount of code
duplication: It contains two advice, which are identical except for the pointcut to which they are
attached and the parameters which they use for setting the valid range.

6Still, cflowbelow -based pointcuts can be used in shakeins where needed—for example, to prevent a call to
Point.moveBy() from causing multiple display updates as it changes both point coordinate; see [152] for a
discussion of this use ofcflowbelow .
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By using shakein composition, we can do away with this duplication. Figure 2.11 is a re-
definition of theConfined shakein using pointcut parameters andshakein composition. By

// Auxiliary shakein, used to confine updates to one variable:
shakein ConfinedUpdate[ pointcut setValue( int v),

int min, int max] {
before ( int v): setValue(v) {

if ((v < min) || (v > max))
throw new IllegalArgumentException();

}
}

// Compose the auxiliary shakein twice, once per axis:
shakein Confined[ int minX, int maxX, int minY, int maxY] :=

ConfinedUpdate[ set ( int x) && args ( int v), minX, maxX] ◦
ConfinedUpdate[ set ( int y) && args ( int v), minY, maxY];

Figure 2.11: A third version ofConfined (Figure 2.8), using shakein compo-
sition. The auxiliary shakeinConfinedUpdate , which accepts a
pointcut parameter, is composed twice to create the desired result

using shakein composition, we can now apply the same advice twice. In fact, we have here an
example forrepeated applicationof the auxiliary shakeinConfinedUpdate , first for theY -
axis, and then, on the result for theY -axis.

While pointcut parameters can be simulated inASPECTJ and similar languages using abstract
pointcut definitions, other configuration parameters (such as theint values used to set the valid
range) are not supported, nor is repeated application. Thus, there is no way to avoid code duplica-
tion when creatingConfined as anASPECTJ-style aspect.

With repeated application, pointcut parameters, and other parameter types, highly configurable
shakeins can be defined. For example, we can define role-based security7 using a shakein which
accepts, in addition to its base class, two additional parameters: a pointcut definitionP, specifying
which join points require a given role, and a role nameR. Given this definition, we can specify
that certain methods in a bank account class,Account , require users to have the “teller ”
credentials:

Security[ Pt, "teller" ]<Account>

wherePt is a concrete pointcut definition. An additional application of the same shakein can then
be used to specify which methods require client authorization:

Security[ Pc, "client" ]<Security[ Pt, "teller" ]<Account>>

wherePc is another concrete pointcut definition. This process can be repeated as many times as
necessary, applying different configuration parameters to different classes. Shakein composition
makes it possible to abbreviate the above, by writing, e.g.,

shakein MySecurity :=
Security[ Pc, "client" ] ◦ Security[ Pt, "teller" ];

(2.1)

and then applying the result to multiple classes as needed:MySecurity<Account> , My-
Security<Branch> , etc.

7A security model in which permission to execute certain methods is granted only if the user belongs to some
pre-defined group, or role.
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2.3.3 A New Light on Aspect Terminology

By viewing shakeins are operators, taking classes as arguments and producing classes, we can
clarify some of the illusive notions and terms used in traditional AOP jargon:

1. Aspect Instantiation.The semantics of instantiation of aspects, i.e., the reification of as-
pects at runtime, can be quite confusing. InASPECTJ there are no less than five differ-
ent modes of such instantiations:issingleton —a single instance serving all advised
objects; pertarget —an instance for each advised object, and a very similar variant,
perthis ; percflow —an instance for each execution of an advice, accompanied with
a close variant,percflowbelow . Some of these modes are further parameterized by a
pointcut definition.

In contrast, shakeins, just like mixins and generics, operate on code, and as such, they no
longer exist at runtime. (Of course, the result of a shakein is a class which may have runtime
instances.)

Even the intriguing question of static fields defined in an aspect is simplified in the do-
main of shakeins. Since a shakein generates a re-implementation of a class, each such re-
implementation will have its own copy of the static field—just as with static fields defined
in mixins.8

2. Aspect Precedence.Different advices from different aspects may be applicable to the same
join point. Yet in almost all cases, the order of advice application is significant. For ex-
ample, if logging and security are applied in the wrong order, there will be no logs of any
invocations that failed the security check, in breach of security.

AOP languages make it possible to define global precedence rules for aspects. However,
this declaration is never complete unless all participating aspects are known; and there is no
possibility of applying a set of aspects to different classes in a different order.

As operators, shakeins can easily be applied in a specific order as the need arises.

3. Abstract Pointcut.In ASPECTJand other similar languages, anabstract pointcutis a named
pointcut with no concrete specification. An aspect may include an abstract pointcut and
apply advice to it. Such an aspect is said to beabstract, in the sense that it cannot be applied
without effecting the missing pointcut definition. Aconcreteversion of this aspect may
be generated by defining a “sub-aspect” for it, which must provide a concrete value to the
abstract pointcut.

This mechanism provides a measure of flexibility; for example, using abstract pointcuts, an
off-the-shelf aspect need not declare in advance the exact join points to which it will apply.
Yet the terms are confusing when used in conjunction with OOP. An abstract pointcut does
not offer dynamic binding to the concrete version, nor does it offer a signature that must be
obeyed by all its implementors.

Standing at the shakein point of view, abstract pointcuts are nothing more than a poor man’s
replacement for a pointcut parameters.

4. Abstract Aspects.An aspect is abstract not only when it contains abstract pointcuts, but
also when it contains abstract methods. These methods can then be invoked from advice,
effectively using theTEMPLATE METHOD [105] design pattern. By defining concrete sub-
aspects that implement these methods, the programmer may define a different aspect each
time.

8This of course applies only to static fields defined in the shakein itself; static fields defined in the base class still
have only one copy.
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A shakein may also define a method as abstract. Such a definition overrides the method
definition in the shakein’s class parameter. An application of such a shakein yields an ab-
stract class, which can then be extended by other shakeins and provided with a concrete
implementation for the missing methods. However, unlike in the case of abstract aspects,
the implementation of the abstract methods in a shakein can optionally be different for each
application of the shakein.

5. Aspect Inheritance.Except in the case of abstract super-aspects, the notion of aspect inher-
itance is ill-defined, and most aspect languages follow the footsteps ofASPECTJ in prohibit-
ing this. The main reason is that a sub-aspect will clearly share the same pointcut definitions
as its parent, and the same advice; does this imply that each advice should therefore be ap-
plied twiceto each matching join point?

For shakeins, no such problem exists. As shakeins are operators, shakein inheritance is
nothing more than operator composition, as inshakein S3<c> := S2<S1<c>> .

It is therefore evident that while sharing the flexibility and expressive power of aspects,
shakeins, by virtue of being parameterized operators on code, reconcile naturally with the con-
cept of inheritance. They do not exhibit the confusing notions that accompany aspects, and their
behavior is easy to understand within the domain of aspect-oriented programming.

In a one-sentence summary of Section 2.3, we may refine the description of shakeins originally
presented at the beginning of Section 2.2:Shakeins make aconfigurable re-implementationof a
class parameter.

2.4 Related Work

Obviously, we were not the first to observe the case for using aspects in middleware applications in
general, and in J2EE in particular. Indeed, there is a large body of previous work in which aspects
are applied in the middleware domain: JAC [190], Lasagne [222], PROSE [192], JAsCo [216],
and others.

Unlike shakeins and other similar research work, theJBoss Application Server[144] and
Spring Application Framework[146] are industrial-strength software artifacts employed in pro-
duction code. The lessons that these two teach are therefore valuable in appreciating the merits of
shakeins. We therefore begin by comparing shakeins to these two technologies. Section 2.4.1 com-
pares shakeins with the dynamic aspects of the JBoss Application Server. A comparison with the
AOP features of the Spring Application Framework is the subject of Section 2.4.2. Section 2.4.3
provides an overview of other related work.

2.4.1 JBoss Dynamic AOP

Version 4.0 of JBoss was the first implementation of J2EE to integrate AOP support. For technical
reasons, theJBoss AOP[45] approach features advice- rather than aspect-level granularity, where
each advice is encapsulated in what is called aninterceptorclass.

It is telling that the JBoss AOP enhancements of the aspect notion are similar to these of
shakeins, including advice composition (stacksin the JBoss jargon), parameterized advice, se-
lective and repeated application of advice, explicit and flexible (rather than global) ordering, and
configuration parameters. We interpret this as a supporting empirical evidence to the claim that
flat-oblivious aspects should be extended in certain ways.
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Still, since the application of (standard) advice in JBoss is carried out in situ, destroying the
original class, the JBoss approach suffers from the aspect/inheritance schism, instantiation com-
plexity, etc. Perhaps in recognition of these difficulties, JBoss AOP also supportsdynamic AOP—
the ability to apply advice per instance rather than per class. A class must be “prepared” for such
a dynamic application, by injecting into its code (at load time) hooks for the potential join points.
The class loader consults an XML configuration file for the list of classes to prepare, and the hook
locations. It is then possible, at run time, to add or remove interceptors.

In this extent, JBoss’s flexibility and repertoire of features is greater than that of shakeins.
JBoss offers the ability toun-applyan advice at runtime. This feature is missing in shakeins, but
can be emulated by testing an on/off flag at the beginning of every advice. (And in Chapter 6
we will see how object re-classification can be used to achieve language-level dynamic AOP with
shakeins.)

JBoss’s dynamic AOP approach allows advised and unadvised instances to co-exist, yet it
suffers from acute problems. Some of these problems are specific to the current version; for
example, a dynamically-applied interceptor always interceptsall “prepared” join points in the
target class, and must test explicitly, at runtime, to see if the current interception is of interest.
For example, if two different pointcuts are used to “prepare” a class, for use by two different
interceptors, then each join point will be tested twice: once by the interceptor that requires it, and
once by the interceptor that does not. This shortcoming will hopefully be fixed in future releases.
Other problems, however, are fundamental to the JBoss approach. For example, since interceptors
are applied to existing objects, advice cannot be applied to constructors.

The most significant difference between JBoss AOP and shakeins is the approach taken for in-
tegration with the base technology. As explained above, shakeins are a language extension, which
draws from principles of OO and genericity. In contrast, the variety of features in JBoss AOP
is realized by a sophisticated combination of loaders, runtime libraries, and XML configuration
files, and without any changes to the compiler (or the JVM). Thus, (probably in answer to Sun’s
J2EE certification requirements) JBoss AOP is an implementation of aspects through a software
framework built over vanillaJAVA . Compliance with these requirements might also explain why
standard J2EE services are not implemented as aspects in JBoss, and are therefore not as flexible
as they might be.

Since JBoss aspects are not part of the language, a programmer who wishes to exploit aspect
features is asked to master a variety of tools, while following the strict discipline dictated by the
framework, with little if any compiler checking. For example, the runtime application of advice is
achieved using aJAVA API; the compiler is unaware of the involved AOP semantics. As a result,
many mistakes (e.g., an attempt to access an invalid method argument), can only be detected at
runtime, possibly leading to runtime errors. Other problems, such as a mistyped pointcut (which
matches no join points) will not be detected at all.

Thus, in a sense, the offerings of JBoss AOP can be compared to assembly programming:
immense flexibility but with greater risks. However, unlike assembly code, performance in JBoss
is not at its peak.

The clockwork driving the JBoss framework is visible to the programmer. The programmer
mustunderstand this mechanism in order to be able use it. This visibility has its advantages. For
example, the illusive issue of aspect instantiation inASPECTJ is clarified by JBoss: since inter-
ceptors must be instantiated explicitly prior to their application, the semantics of aspect instance
management is left up to the programmer.

To illustrate some of the issues of a framework based implementation of aspects, consider
Figure 2.12, which demonstrates how theConfined shakein (Figure 2.11) is implemented in
JBoss. Figure 2.12(a) depicts aJAVA class which, by obeying the framework rules, can be used as
an interceptor. The runtime content of argumentinv to methodinvoke (lines 12–20) is the only
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(a)

1public class Confined implements Interceptor {
2 private int min, max;
3 private String fieldName;

5 public Confined(String fieldName, int min, int max) {
6 this .min = min; this .max = max;
7 this .fieldName = fieldName;
8 }

10 public String getName() { return "Confined" ; }

12 public Object invoke(Invocation inv) throws Throwable {
13 FieldWriteInvocation fwi = (FieldWriteInvocation)inv;
14 int v = (Integer)(fwi.getValue());
15 if (fwi.getField().getName().equals(fieldName))
16 if (v < min || v > max)
17 throw new IllegalArgumentException();
18 // proceed to subsequent interceptors/base code:
19 return inv.invokeNext();
20 }
21}

(b)

<aop>
<prepare expr= "set(int Point->x) OR set(int Point->y)" />

</aop>

Figure 2.12: (a) Confined as a JBoss interceptor, and(b) the supporting config-
uration file

information that the method has on the interception. The method assumes that the join point kind
is a field-write, and uses a downcast operation (line 13) to access the specific features of a field-
write join point, and in particular the newly-assigned value. This value is obtained (line 14) by
downcasting anObject to the proper type. Both downcasts will fail if the interceptor is applied
to an incorrect join point.

Figure 2.12(b) is the XML code that directs the injection of the hooks intended for this in-
terceptor into classPoint . To minimize the overhead, only the relevant join points inPoint
were prepared. The interceptor is intimately coupled with the XML, in making tacit assumptions
on the join point kind and the argument type; violations of these assumptions are only detected at
runtime, e.g. by downcast failures.

To create a shakein-typed instance ofPoint , one may write

Point p = Confined[0,1023,0,767]<Point>(); //Shakein version.

The JBoss equivalent is a bit longer:

Point p = new Point(); //JBoss dynamic AOP version.
InstanceAdvisor advisor = ((Advised)p)._getInstanceAdvisor();
advisor.appendInterceptor( new Confined( "x" , 0, 1023));
advisor.appendInterceptor( new Confined( "y" , 0, 767));

This code demonstrates more intricacies of implementing aspects by a software framework.
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First, we see that advices are applied only after the object was constructed (no refinement of the
constructors is possible). Second, since there is no explicit composition operator9, two interceptors
must be manually applied, one per axis. Third, we see thatp must be casted to the interface type
Advised . This interface type is implemented by the modified (prepared) version ofPoint ; yet
the compiler is not aware of this change. If the class was not prepared (e.g., an inconsistency in
the XML file), then this cast attempt will fail. Finally, again due to compiler obliviousness, field
names are represented as string literals (here, as arguments to the interceptor’s constructor). Any
mistake in the field name (e.g., writing “X” instead of “x ”) will go undetected and result in silent
failure. By comparison, an empty pointcut argument to the auxiliary shakein from Figure 2.11 can
trigger a compile-time warning.

Figure 2.13 compares the runtime performance of the JBoss and the shakein implementation
of aspectConfined . The figure depicts the operations throughput of classPoint in the base
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Figure 2.13: Performance degradation of classPoint with different strategies of
applying a “confinement” aspect

implementation and in the different aspectualized versions.10 We see that the original class suffers
no performance penalty in the shakein version. This was expected, because a shakein makes no
modifications to the base class itself. The shakein-advised instance, generated by two subclassing
operations, is about 8% slower. In contrast, while using JBoss AOP, instances of the original class

9Stacks cannot be used here.
10Specifically, we used the number of times the sequence of calls〈setX , setY , moveBy〉 can be completed in

a time unit.
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suffer from a performance impact of about 28% before any advice is applied; this is the overhead
introduced by the join point hooks. Once applied, the reflection-based interceptors slow the JBoss
version to 1.5% of the original throughput.

There are two main sources of performance degradation in the JBoss implementation.Time
wise, hooks slow down code, and this slowdown occurs even if no advices are applied to the
receiver instance. (In classPoint , this slowdown was by 28%.) Moreover, even a non-prepared
class may be slowed down, if its code matches, e.g., a join point of acall to a prepared class.

Additional slowdown is caused by the advice having to use reflection-like objects in order to
learn about the join point. The invocation object must be downcast to the specific invocation type
(Field Write Invocation in Figure 2.12(a)), and arguments must be downcast fromObject
references to their specific types. As we have seen, this slowdown was by more than an order of
magnitude in the case ofPoint . To be fair, we expect a more modest relative performance
degradation in classes that do more substantial computation.

Space wise, the advice (whenever a join point is reached) is reified in a runtime object. The
memory consumed by this object must be managed, thereby leading to additional slowdown. The
invocation itself is reified in a number of objects (metadata, argument wrappers, arguments array,
etc.) which add to the space and time overheads of the implementation. A quick inspection of
Figure 2.12(a) reveals that there are at least four objects generated in reifying the join point.

2.4.2 Spring AOP

The Spring Application Framework is an “inversion of control” [101] container, used for applying
services to standardJAVA objects. It is often used in conjunction with a J2EE server for developing
enterprise applications; however, Spring provides alternatives to many of the J2EE services, in a
more flexible and developer-friendly manner.

Objects in Spring are “beans”, all obtained via a centralized factory which is configured using
an XML file. This XML file specifies what properties should be set and what services applied to
each bean type. Developers can choose from a wide range of pre-defined services (e.g., Hibernate-
based persistence [22]) or define their own. New services (as well as existing ones) are defined
using Spring’s AOP facilities. Spring also supports the integration of standardASPECTJ aspects,
but we focus here on the framework’s internal AOP support.

Much like shakeins, AOP in Spring is based on the generation of new classes. When advice
is applied to a class, a new class is generated, which either implements the same interfaces as the
base class or else extends it as a subclass. Thus, Spring enjoys several of the benefits of shakeins,
including selective and non-destructive application, explicit and flexible ordering, configuration
parameters (to an extent), and repeated application. In particular, due to the non-destructive appli-
cation of aspects, there is no performance penalty to instances of the original class, which remains
unmodified (see Figure 2.13).

However, beyond these similarity, there are several differences of note between the Spring
and shakein approaches. Advice in Spring is manifested as an interceptor class, which is invoked
whenever an advised method is executed. Pointcuts are also manifested as classes, and interro-
gated at runtime to find out which methods should be advised. Much as in JBoss, the mechanism
relies on a sophisticated combination of libraries and configuration files, with no changes to the
language itself. Therefore, Spring AOP shares much of the tolls noted for JBoss AOP, including
similar space and time complexities (with the exception of hooks-induced slowdowns). Addi-
tional performance penalties are caused by the need to evaluate pointcuts at runtime, as well as the
runtime generation of subclasses.

As a design decision, Spring AOP only support method invocation join points (and that, only
for non-private methods). In our tests, the lack of support for field access join points implied
that theConfined aspect had to be made explicitly aware of each of thePoint methods that can
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update the point’s coordinates; in particular, the advice had to re-create the logic for themoveBy
method, as shown in Figure 2.14 (lines 20–28). The Spring point of view contends that this would

1public class Confined implements MethodBeforeAdvice {
2 private int minX, maxX, minY, maxY;

4 public void setMinX( int mX) { minX = mX; }
5 public void setMaxX( int mX) { maxX = mX; }
6 public void setMinY( int mY) { minY = mY; }
7 public void setMaxY( int mY) { maxY = mY; }

9 public void before(Method m, Object[] args, Object target) {
10 if (m.getName().equals( "setX" )) {
11 int newX = ((Integer)args[0]).intValue();
12 if ((newX > maxX) || (newX < minX))
13 throw new IllegalArgumentException();
14 }
15 else if (m.getName().equals( "setY" )) {
16 int newY = ((Integer)args[0]).intValue();
17 if ((newY > maxY) || (newY < minY))
18 throw new IllegalArgumentException();
19 }
20 else if (m.getName().equals( "moveBy" )) {
21 Point p = (Point)target;
22 int newX = p.getX() + ((Integer)args[0]).intValue();
23 if ((newX > maxX) || (newX < minX))
24 throw new IllegalArgumentException();
25 int newY = p.getY() + ((Integer)args[1]).intValue();
26 if ((newY > maxY) || (newY < minY))
27 throw new IllegalArgumentException();
28 }
29 }
30}

Figure 2.14: Confined as a Spring advice class

not have been needed, hadmoveBy relied onsetX andsetY to update the fields, rather than
using direct access (recall Figure 2.1). But from this very claim we must conclude that the Spring
aspect is fragile with respect to changes in the implementation ofPoint ; shouldmoveBy be
updated to rely on the setter methods, the advice must be accordingly updated. A non-fragile
aspect implementation must rely on examining the control-flow at runtime, which a noticeable
performance hit.

Like shakeins and JBoss aspects, Spring aspects support parameterization. However, the pa-
rameter values are passed in XML setup files that are used to initialize and configure the aspects
(and other beans), rather than in source code. For example, the values for the four parameters of
the Confined aspect appear in the XML fragment in Figure 2.15. This is a deliberate design
choice, part of Spring’s “inversion of control”, or “dependency injection” philosophy. While this
approach has many clear benefits (as detailed by Fowler [101]), it also means that any type mis-
match in passing parameter values will only be detected at runtime. Still, such problems will be
detected immediately upon program startup, when the configuration file is parsed, and are thus
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<bean id= "confinedInterceptor" class= "Confined" >
<property name= "minX" ><value>0</value></property>
<property name= "maxX" ><value>1023</value></property>
<property name= "minY" ><value>0</value></property>
<property name= "maxY" ><value>767</value></property>

</bean>

Figure 2.15: Configuring the Spring aspect (fragment)

unlikely to go undetected during development.
In our benchmarks (Figure 2.13), the Spring-basedConfined aspect (which was not created

using composition, due to its asymmetry with regard tomoveBy) was over twice as fast as the
JBoss version, but still much slower than the shakeins-based version.11 The performance penalty
was caused mainly by the need to analyze the method arguments and the join point (in particular,
the method being executed) at runtime.

2.4.3 Other Related Work

The AspectWerkz [34] project, which was discontinued and integrated intoASPECTJ, introduces
aspects toJAVA with no language change. Much like JBoss AOP, AspectWerkz AOP works by
using XML files to dictate the weaving of hooks, at load time, to classes. These hooks function as
runtime tests for the application of aspects. AspectWerks shares both the strengths and weaknesses
of the JBoss AOP approach; aspects can be added or removed dynamically, on an object-based
(rather than class-based) level, providing considerable flexibility. However, the performance of
every instance of the original class, regardless of the actual use of aspects, suffers.

Several works suggest usingwrappers[105], rather than subclasses, as a mechanism for inter-
cepting method calls. For example,JAC (Java Aspect Components) [190] is a component-based
framework aimed at enterprise software development withJAVA . JAC components, like Enterprise
JavaBeans, reside in containers; however containers can also containaspect components. Aspect
components can be preloaded into the container or loaded at runtime.

The wrapper-based approach implies that aspects can be changed dynamically; the wrapper
maintains a list of advice applied to the wrapped object, and this list can be modified at will. How-
ever, the approach also implies an increased memory footprint: each advised object is represented
by a + 2 objects in memory, wherea is the number of applied advice, plus one wrapper and the
object itself.12 A more significant limitation of the wrapper approach relates to possible advice tar-
gets. Only calls to public methods can be intercepted by a wrapper. While this limitation is shared,
e.g., by the Spring framework as a design decision, the wrapper approach is further limited by the
fact that onlyexternalcalls to advised methods can be trapped. Whenever one public method of
the wrapped object invokes another such method, the invocation is direct and does not pass via
the wrapper, thereby skipping any advice applied to the target method. This happens because,
while all external references to the object are in fact references to its wrapper, thethis reference
used internally remains a direct pointer. The subclassing approach suggested in this work does not
suffer from this limitation.

Lasagne [222] is another wrapper-based approach for introducing aspects to middleware
frameworks (andJAVA applications in general). The system presents a higher-level approach than

11The class shown in Figure 2.14 is somewhat simplified; the actual tests were performed using a more optimized
version of this code. Testing was done using Spring version 1.2.6.

12In practice, thelist of aspects maintained by the wrapper is also an object. However, several advice objects can be
shared by several wrappers, if a given advice includes no object-specific state.
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JAC. Since it is based on wrappers, Lasagne is non-invasive, works on a per-instance level, and
allows for dynamic aspect application or removal. However, it shares the same limitations of the
wrapper approach, and has been criticized for carrying a significant performance overhead [28].

2.5 Summary

Shakeins are a novel, aspect-like programming construct, with three distinguishing characteriza-
tion: explicit application semantics, configuration parameters, and restriction on the changes to
a class to be re-implementation only. We have seen that the shakein construct integrates well
with the object model, by distinguishing the five facets of a class: type, forge, implementation,
mold and mill, and explaining how these can be modified by shakeins. It was shown that if we
adher to the principle that no variables of shaked classes are allowed, then the construct can be
implemented with current JVMs, and using the existing inheritance model ofJAVA .

Shakeins enjoy the advantages of the parameterized notation of mixins, while offering a sim-
ple answer to the accidental overriding problem. Thanks to the pointcuts semantics of aspects,
shakeins become more expressive than mixins in the sense that they can “examine” the internals
of their target classes. Conversely, thanks to the parameterized semantics and the object model
integration, shakeins simplify some of the more subtle issues of aspects, including aspect inheri-
tance, instantiation, and abstract aspects.

As an important application and prime motivation for actual use of this construct, the following
chapter presentsASPECTJ2EE, an AOP programming language, similar in syntax toASPECTJ,
with aspects that have a shakein semantics. We will use theASPECTJ2EEdesign to show that the
shakeins semantics integrates well with the current architecture of J2EE servers.

Shakeins require a language for pointcut expressions. While the examples in this chapter and
the next use the standardASPECTJpointcut language, a superior alternative,JTL, will be presented
in Chapter 4. We will also see how JTL can be used to express limitations on the types to which a
shakein can be applied.

To properly integrate shakeins with a programming framework, we must find a way to en-
sure that every obtained instance (or, in some cases, some obtained instances) of a given class
is replaced by a different, shakein-generated class that implements the same type. For exam-
ple, we might wish that any attempt to obtain an instance of classAccount will yield an in-
stance ofSecure<Account> . In ASPECTJ2EE, we will use the standard J2EE mechanism of
home objects to solve this problem. This mechanism is nothing but a variant of theFACTORY

METHOD [105] design pattern. A more elegant solution, namelyfactories, will be presented in
Chapter 5.

Finally, Chapter 6 suggestsobject evolutionas a language extension that will enable shakeins
to support dynamic aspect facilities.
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Chapter 3

AspectJ2EE

High thoughts must have high language.

— Aristophanes,The Frogs

Having presented the advantages of shakeins, the time has come for evaluating their usefulness. To
do so, we would like to go beyond the small examples presented in the previous chapter. The more
thorough examination is in the context of a real life application, and in particular, with respect to
the J2EE framework.

To demonstrate the applicability of shakeins to this domain, we introduce theASPECTJ2EE
language, which shows how they can be used to bring the blessings of AOP to the J2EE framework.
ASPECTJ2EEis geared towards the generalized implementation of J2EE application servers and
of applications within this framework.

As the name suggests,ASPECTJ2EEborrows much of the syntax ofASPECTJ. The semantics
of ASPECTJ2EEis adopted from shakeins, while adapting these toASPECTJ. To maintain max-
imal syntactical similarity, shakeins inASPECTJ2EEare defined using the keywordaspect .
There are, however, several syntactical differences, mostly due to the fact that “aspects” inAS-
PECTJ2EEcan be parameterized.

In the initial design ofASPECTJ2EE, parameter passing and the application of shakeins are
not strictly part of the language. They are governed mostly by external XML configuration files,
a-la J2EE deployment descriptors.

A distinguishing advantage of this new language is that it can be smoothly integrated into
J2EE implementations without breaking their architecture, thereby fulfilling the conceptual mar-
riage discussed in Section 1.1.3. This smooth integration is achieved by generalizing the existing
process of binding services to user applications in the J2EE application server into a noveldeploy-
time mechanism of weaving aspects. Deploy-time weaving is superior to traditional weaving
mechanisms in that it preserves the object model, has a better management of aspect scope, and
presents a more understandable and maintainable semantic model. Also, deploy time weaving
stays away from specialized JVMs and bytecode manipulation for aspect-weaving.

Standing on the shoulders of the J2EE experience, we can argue that shakeins in general,
andASPECTJ2EEin particular, are suited to systematic development of enterprise applications.
Unlike existing attempts to add AOP functionality to J2EE application servers, theASPECTJ2EE
approach is methodical. Rather than add aspects as an additional layer, unrelated to the existing
services, our approach is that even the standard services should be implemented on top of the AOP
groundwork. UsingASPECTJ2EE, the fixed set of standard J2EE services is replaced by a library
of core aspects. These services can be augmented with new ones, such as logging or performance
monitoring.
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It should be noted thatASPECTJ2EEhas its limitations compared to more traditional imple-
mentations of aspects; in particular, it is not at all suited to low-level debugging or nit-picking
logging. For example, access tonon-privatefields by classes other than the defining class is not
a valid join point inASPECTJ2EE. However, it is not for these tasks thatASPECTJ2EEwas
designed, and it is highly suited for dealing with large systems and global aspect-oriented pro-
gramming. In the kind of systems we are interested in, the field access restriction example does
not mature into a hurdle; field management can be always be decomposed into getter and setter
methods, and in factmustbe decomposed this way in J2EE applications, where fields are realized
asattributeswith proper join points at their retrieval and setting.

We stress that unlike previous implementations of aspects within the standard object model,
ASPECTJ2EEdoes not merely support “before” and “after” advices and “method execution” join
points. ASPECTJ2EEsupports “around” advices, and a rich set of join points, including control-
flow based, conditional, exception handling, and object- and class-initialization.

In contrast to its lack of suitability for low-level tasks,ASPECTJ2EEboasts specific support
for high-level tasks appropriate to enterprise applications. In particular, it has special support for
the composition of aspects that are scattered across program tiers (tier-cutting concerns), such as
encryption, data compression, and memoization.

Historically, the developers of enterprise applications are slow to adopt new technologies; a
technology has to prove itself again and again, over a long period of time, before the maintainers of
such large-scale applications will even consider adopting it for their needs. It is not a coincidence
that many large organizations still use and maintain software developed using some technologies,
such asCOBOL , that other sectors of the software industry view as thoroughly outdated. The huge
investment in legacy code slows the adoption of new technologies.

We believe that the fact thatASPECTJ2EE, by its reliance on shakeins, preserves the standard
object model, while also relying on existing J2EE technologies, should contribute to widespread
adoption of this new technology in the middleware software domain.

Chapter outline. Section 3.1 presents an overview of theASPECTJ2EElanguage. Section 3.2
discusses the weaving process, which is part of any AOP system, and shows how the deploy-
ment step of J2EE applications can be extended into a weaving mechanism. Next, Section 3.3
presents the language in greater detail, including a discussion of implementing shakeins by means
of subclassing, and an overview of theASPECTJ2EEclass library. Finally, Section 3.4 presents
a few innovative uses forASPECTJ2EE’s unique support for the aspectualization of tier-cutting
concerns. Section 3.5 concludes.

3.1 An Overview ofASPECTJ2EE

The ASPECTJ2EElanguage was designed as a shakeins-based alternative toASPECTJ. To this
end, its syntax parallels that ofASPECTJto a large extent.1 An aspect structure inASPECTJ2EE
defines not anASPECTJ-style aspect, but rather a shakein. Thus, it cannot, for example, contain
instantiation instructions; as detailed in Section 2.3.3, shakeins are never instantiated.

The main issues in which theASPECTJ2EElanguage differs fromASPECTJ are:

1. Aspect targets.ASPECTJ can apply aspects to any class, whereas inASPECTJ2EEaspects
can be applied toenterprise beansonly, i.e., those modules to which J2EE services are
applied. (This selective application is made possible by the shakein semantics, which al-

1ASPECTJ2EEwas designed to be syntactically similar toASPECTJ version 1.2, the most recent version at the time
of ASPECTJ2EE’s design.
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ways have a designated target.) In OOP terminology these beans are the core classes of the
application, each of which represents one component of the underlying data model.

As demonstrated by the vast experience accumulated in J2EE, aspects have great efficacy
precisely with these classes. We believe that the acceptance of aspects by the community
may be improved by narrowing their domain of applicability, which should also benefit
understandability and maintainability.

In this sense,ASPECTJ2EEfollows the steps of the Spring Application Framework, which
likewise treats beans as the core components in enterprise applications and allows aspects
to be applied only to beans. Also like Spring, beans inASPECTJ2EEare taken in a more
liberal sense than the J2EE specification required; for example,ASPECTJ2EEbeans, unlike
standard EJBs, need not contain any lifecycle methods. Where needed, such methods can
be automatically added by applying relevant aspects to the bean. In fact, most regularJAVA

classes can be used as beans inASPECTJ2EEapplications.

Still, it should be stressed that the factASPECTJ2EEaspects can only be applied to beans
is not a limitation of the shakein concept, but rather anASPECTJ2EEdesign decision.

2. Weaving method.Weaving the base class together with its aspects inASPECTJ2EErelies
on the same mechanisms employed by J2EE application servers to combine services with
the business logic of enterprise beans. This is carried out entirely within the dominion of
object oriented programming, using the standardJAVA language, and an unmodified JVM.
Again, this is made possible by the shakein semantics.

In contrast, different versions ofASPECTJ used different weaving methods relying on pre-
processing, specialized JVMs, and dedicated byte code generators, all of which deviate from
the standard object model.

3. Aspect parametrization.Since the aspects inASPECTJ2EEare shakeins, they take three
kinds of parameters: pointcut definitions, types, and literal values. Parameterized aspects
can be applied to EJBs by providing (in the EJBs deployment descriptor) a concrete value
for each parameter, including concrete pointcut definitions. Pointcut parameters provide sig-
nificant flexibility by removing undesired cohesion between aspects and their target beans,
and enables the development of highly reusable aspects. It creates, inASPECTJ2EE, the
equivalent of Caesar’s [171] much-touted separation between aspect implementation and
aspect binding.

Other aspect parameter types also greatly increase aspect reusability and broaden each as-
pect’s applicability.

4. Support for tier-cutting concerns.ASPECTJ2EEis uniquely positioned to enable the local-
ization of concerns that cross not only program modules, but program tiers as well. Such
concerns include, for example, encrypting or compressing the flow of information between
the client and the server (processing the data on one tier and reversing the process on an-
other). Even with AOP, the handling of tier-cutting concerns requires scattering code across
at least two distinct program modules. We show that usingASPECTJ2EE, many tier-cutting
concerns can be localized into a single, coherent program module.

These are the keyconceptualdifferences betweenASPECTJ2EEandASPECTJ. Other, mainly
syntactical differences are discussed below in Section 3.3.

ASPECTJ2EEdoes not impose constraints on the base code, other than a subset of the dic-
tations of the J2EE specification [82, 202] on what programmers must, and must not, do while
defining EJBs. The dictations that are of importance toASPECTJ2EEare that instances must
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be obtained via the Home interface, rather than by directly invoking a constructor or any other
user-defined method; and that business methods must not befinal or static . Other require-
ments for EJBs, such as the prohibition on defining methods assynchronized or using file
I/O mechanisms, are relaxed. In particular, the EJB 2.x requirement that EJB classes must be
abstract is removed. If needed, specific services (aspects) can present specific limitations to
their target classes. For example, a load-balancing aspect may require that the base class contains
nosynchronized business methods.

J2EE application servers offer the developer only minimal control over the generation of sup-
port classes.ASPECTJ2EE, however, gives a full AOP semantics to the deployment process. With
deploy-time weaving, described next, the main code is unmodified, both at the source and the bi-
nary level. Further, the execution of this code is unchanged, and can be carried out on any standard
JVM.

3.2 Weaving, Deployment and Deploy-Time Weaving

Now that the theoretical foundation of the shakeins construct was established, and that we under-
stand how and why it may be useful in the context of middleware frameworks, the time has come
to combine the two. The first step is in describing how deployment, a basic technique of J2EE,
can be generalized for the process of weaving aspects (specifically, shakeins) into an application.

Section 3.2.1 explains weaving. Deployment is the subject of Section 3.2.2. Weaving of
shakeins onto EJBs is discussed in Section 3.2.3, while Section 3.2.4 generalizes this process to
arbitrary classes.

3.2.1 Weaving

Do you hear the wind? It’s not dying,
It’s singing, weaving a song . . .

— John Ashbery,Train Rising Out of the Sea

Weavingis the process of inserting the relevant code from various aspects into designated loca-
tions, known asjoin points, in the main program. In their original presentation ofASPECTJ [150],
Kiczaleset al. enumerate a number of weaving strategies: “aspect weaving can be done by a
special pre-processor, during compilation, by a post-compile processor, at load time, as part of
the virtual machine, using residual runtime instructions, or using some combination of these ap-
proaches.” Each of these weaving mechanisms was employed in at least one AOP language imple-
mentation. As mentioned before, our implementation of shakeins use its own peculiardeploy-time
weavingstrategy. In this section we motivate this strategy and explain it in greater detail.

We first note that the weaving strategies mentioned in the above quote transgress the bound-
aries of the standard object model. Patching binaries, pre-processing, dedicated loaders or virtual
machines, will confuse tools such as debuggers, profilers and static analyzers, and may have other
adverse effects on generality and portability.

Further, weaving introduces a majorconceptualbottleneck. As early as 1998, Walker, Bani-
assad and Murphy [227] noted the disconcert of programmers when realizing that merely read-
ing a unit’s source code is not sufficient for understanding its runtime behavior. Further, Lad-
dad [158, p. 441] notes that inASPECTJ, the runtime behavior cannot be deduced even by reading
all modules, including both classes and aspects, since the application of aspects to the main code
is governed by the command used to invoke the compiler.

42



The remedy suggested by Constantinides, Bader, and Fayad in theAspect Moderatorframe-
work [70] was restricting weaving to the dominion of the OOP model. In their suggested frame-
work, aspects and their weaving are realized using pure object-oriented constructs. Thus, every
aspect-oriented program can be presented in terms of the familiar notions of inheritance, poly-
morphism and dynamic binding. Indeed, as Walkeret al.conclude: “programmers may be better
able to understand an aspect-oriented program when the effect of aspect code has a well-defined
scope”.

Aspect Moderator relies on thePROXY design pattern [105] to create components that can be
enriched by aspects. Each core class has a proxy which manages a list of operations to be taken
before and after every method invocation. As a result, join points are limited to method execution
only, and onlybefore () and after () advices can be offered. Another notable drawback
of this weaving strategy is that it isexplicit, in the sense that every advice has to be manually
registered with the proxy. Registration is carried out by issuing a plainJAVA instruction—there are
no external or non-JAVA elements that modify the program’s behavior. Therefore, long, tiresome
and error-prone sequences of registration instructions are typical to Aspect Moderator programs.

A better strategy of implementing explicit weaving is that this code is generated by an auto-
matic tool from a concise specification. The shakein weaving mechanism gives in essence this
tool. However, rather than generate explicit weaving code for a proxy, it generates a woven ver-
sion of the code in anewly generated subclass. By replacing the proxy pattern with the notion
of subclassing, it is also able to handle advice types other thanbefore () andafter () , and
handle a richer gamut of join point types, as detailed below in Section 3.3.3.

Thus, shakeins do not use any of the obtrusive weaving strategies listed above. Rather, the
mechanism employs a weaving strategy thatdoes not breakthe object model. Instead of modifying
binaries (directly, or by pre-processing the source code), the application of a shakein to a class
results in an “under the hood” generation of a new class that inherits from, rather than replaces,
the original. The new class provides an alternative realization, a re-implementation, of the same
type; it does not introduce a new type, since there are no visible changes to the interface. This re-
implementation is generated by advising the original one with the advice contained in the shakein.

Clearly, there are limitations to the approach of implementing shakeins as subclasses. The
main such limitation is that Proposition 1 does not hold in the general case. Below we will show
that in the particular case of EJBs in J2EE, this restriction does not arise, because access to EJBs
is through interfaces.

3.2.2 Deployment

J2EE offers a unique opportunity for generating the subclasses required for the weaving of
shakeins. Figure 3.1 compares the development cycle of traditional and J2EE application. We
see in the figure thatdeploymentis a new stage in the program development process, which occurs
after compilation but prior to execution. It is unique in that although new code is generated, it is
not part of the development, but rather of user installation.

Deployment is the magic by which J2EEservices, such as security and transaction manage-
ment, are welded to applications. The generation of sub- and support classes is governed by
deployment descriptors[202, Sec. 2.11.4], which are XML configuration files.

The idea behind deploy-time weaving is to extend this magic, by placing the shakein semantics
in government of this process. As shakeins are based on straightforward inheritance, this extension
also simplifies the structure of and inter-relationships between the generated support classes.

Technically,deploymentis the process by which an application is installed on a J2EE applica-
tion server. Having received the application binaries, deployment involves generating, compiling
and adding additional support classes to the application. For example, the server generatesstuband
tie (skeleton) classes for all classes that can be remotely accessed, in a manner similar to, or even
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Figure 3.1: Traditional and J2EE program development steps

based on, the remote method invocation (RMI) compiler,rmic [212]. Even though some J2EE
application servers generate support class binaries directly (without going through the source),
these always conform to the standard object model.

We must study some of the rather mundane details of deployment in order to understand how
it can be generalized to do weaving. To do so, consider first Figure 3.2, which shows the initial
hierarchy associated with anACCOUNT bean, used to represent a bank account in a financial
application.2
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Figure 3.2: Classes created by the programmer for defining theACCOUNT EJB

At the center of the figure, we see interfaceAccount , which inherits fromjavax. ejb. -
EJBObject . This interface is written by the developer in support of the remote interface to the
bean.3 This interface is where all client-accessible methods are declared. In the example, there are
three such methods:withdraw() , deposit() , andgetBalance() . InterfaceAccount

2The deployment process discussed here relates to versions 2.0 and 2.1 of the EJB specification [82].
3For the sake of simplicity, we assume thatACCOUNT has a remote interface only, even though since version 2.0 of

the EJB specification, beans can have either a local interface, a remote interface, or both.
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resides at theclient side.

On the right hand side of the figure, we see abstract classAccount Bean, inheriting from
javax. ejb. EntityBean . The J2EE developer’s main effort is in coding this class, which
will reside at theserver side. There are three groups of methods in the bean class:

1. Business Logic.The first group of methods in this class consists the implementation of
business logic methods. These aredeposit() andwithdraw() in the example.

It is convenient to think of classAccountBean as implementing interfaceAccount .
Technically, and as shown in the figure, noimplements relationship needs to exist be-
tween the two. The reason is that the client and the server run different virtual machines,
which usually reside on physically remote locations.

2. Accessors of Attributes.In addition to regular fields, an EJB hasattributes, which are those
fields of the class that will be governed by the persistence service in the J2EE server. Each
attributeattr is represented by abstract setter and getter methods, calledset Attr () and
get Attr () respectively. Attributes are not necessarily client-accessible.

In the example, there are four such accessors, indicating that the beanACCOUNT has two
attributes: id (the primary key) andbalance . Examining theAccount interface we
learn thatid is invisible to the client, whilebalance is read-only accessible.

3. Lifecycle.The third and last method group comprises a long list of mundane lifecycle meth-
ods, such asejbLoad() andejbStore() , most of which are normally empty when the
persistence service is used. Even though sophisticated IDEs can produce a template imple-
mentation of these, they remain a developer’s responsibility, contaminating the functional
concern code. Later we shall see how deploy-time weaving can be used to remove this
burden.

Finally, at the left hand side of Figure 3.2, we see interfaceAccountHome , which declares
a FACTORY [105] of this bean. Clients can only generate or obtain instances of the bean by using
this interface.

Concrete classes to implementAccountHome , Acount andAccountBean are generated
at deployment time. The specifics of these classes vary with the J2EE implementation. Fig-
ure 3.3 shows some of the classes generated by IBM’s WebSphere Application Server (WAS) [139]
version 5.0 when deploying this bean. Examining the figure, we see that it is similar in struc-
ture to Figure 3.2, except for the classes, depicted in gray, that the deployment process created:
Concrete Account_ b7e62f65 is theconcrete bean class, implementing the abstract meth-
ods defined inAccount Bean as setters and getters for the EJB attributes. Instances of this class
are handed out by classEJSRemoteCMPAccount Home_b7e62f65 , which implements the
factory interfaceAccountHome .

Finally, _Account _Stub , residing at the client side, intercommunicates withConcrete -
Account_ b7e62f65 , which resides at the server side.

In support of theACCOUNTbean, WAS deployment generates several additional classes which
are not depicted in the figure: a stub for the home interface, ties for both stubs, and more. Together,
the deployment classes realize various services that the EJB container provides to the bean: per-
sistence, security, transaction management and so forth. However, as evident from the figure, all
this support is provided within the standard object oriented programming model.
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Figure 3.3: ACCOUNTclasses defined by the programmer, and support classes (in
gray) generated by WAS 5.0 during deployment

3.2.3 Deployment as a Weaving Process for EJBs

You know my methods. Apply them!

— Sherlock Holmes, in Arthur Conan Doyle’s
The Hound of the Baskervilles, Chapter 1

Having understood the process of deployment and the generation of classes in it, we can now
explain how deployment can be used as a weaving process. Consider first the ordered applica-
tion of four standardASPECTJ2EEshakeins (Lifecycle , Persistence , Security , and
Transactions ) to the beanACCOUNT. (Such a case is easier than the more general case, in
which the target class is not an EJB. We will discuss this issue below.)

Weaving by deployment generates, for each application of an aspect (i.e., a shakein) to a class,
a subclass of the target. This subclass is called anadvised class, since its generation is governed
by the advices given in the aspect. Accordingly, the sequence of applications under consideration
will generate four advised classes.

Figure 3.4 shows the class hierarchy after the deployment tool generated these four class in
support of the shakein application expression

Transactions<Security<Persistence<Lifecycle<Account>>>> .

Comparing this figure to Figure 3.3, we see first that the classAccount Bean was shortened
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by moving the lifecycle methods to a newly defined class,AdvAccount _Life cycle . The
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ǸIKacMn

d@�����@E�FY����C

d��oR���=[AE�FY����C

:P=QP��AR��
S
i���B����A�B>?

:
S
����>?

:;��<=��;>?
:=�@AB��>?
:C��U=>?FY����C
:B��U=>?
:C��D�E����>?F�EA��
:B��D�E����>?

H]̂HIIJKLM
G
paqLbqIMcJLb

d�A���r�Fi���B����A�ZA���r�

d\A=�BFs�B<��WE�

d���������FY����C

�������B	

:P=QP��AR��
S
X����e�E�>?

:C��U=>?FY����C
:B��U=>?
:C��D�E����>?F�EA��
:B��D�E����>?
:�VWXA�=>?
:�VWY�A��>?
:�VWZ�����>?
:�VWP���Q���>?
:�VWT�BB�Q���>?
:�VW[�\AQ�>?
:B��t����eZA���r�>?
:R�B��t����eZA���r�>?
:C��t����eZA���r�>?

H]̂HIIJKLM
G
ucv̀ InIẁ
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Figure 3.4: ACCOUNTclasses defined by the programmer, and support classes (in
gray) generated byASPECTJ2EEduring deployment

shakeinLife cycle made it possible to eliminate the tiring writing of token (and not always
empty) implementations of the lifecycle methods in each bean. All these implementations are
packaged together in a standardLife cycle aspect.4

AdvAccount _Life cycle is the advised class realizing the application ofLifecycle to
ACCOUNT. There are three other advised classes in the figure:AdvAccount _Per sis tence ,
AdvAccount _Security andAdvAccount _Trans act ions , which correspond to the ap-
plication of aspectsPersistence , Security andTransactions to ACCOUNT.

The sequence of aspect applications is translated into a chain of inheritance of advised classes,
starting at the main bean class. Theroot advised classis the first class in this chain (Adv-
Account _Life cycle in the example), whereas the last class (AdvAccount _Trans act -
ions in the example) is known as theterminal advised class. Fields, methods and inner classes
defined in an aspect are copied to its advised class.Advised methodsin this class are generated
automatically based on the advices in the aspect.

4The lifecycle methods are declared in the interfacejavax.ejb.EntityBean . Hence, implementing
them in a shakein does not change the type of classAccount Bean.
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We note that although all the advised classes are concrete, only instances of the terminal ad-
vised class are created by the bean factory (the generated EJB home). In the figure for example,
classConcrete RemoteAccount Homecreates allACCOUNTs, which are always instances of
AdvAccount _Trans act ions .

It may be technically possible to construct instances of this bean in which fewer aspects are
applied; there are, however, deep theoretical reasons for preventing this from happening. Suppose
that a certain aspect applies to a software module such as a class or a routine, etc., in all but
some exceptional incarnations of this module. Placing the tests for these exceptions at the point
of incarnation (routine invocation or class instantiation) leads to scattered and tangled code, and
defeats the very purpose of AOP. The bold statement that some accounts are exempt from security
restrictions should be made right where it belongs—as part of the definition of the security aspect!
Indeed, J2EE and other middleware frameworks do not support conditional application of services
to the same business logic. A simple organization of classes in packages, together withJAVA

accessibility rules, enforce this restriction and prevents clients from obtaining instances of non-
terminal advised classes.

Still, some middleware frameworks, such as Spring, do allow developers to define different
beans from the same base business logic. This can be done inASPECTJ2EEas well, by defining
different<entity> elements which apply different aspects to the same<ejb-class> (see the
discussion of the deployment descriptor syntax in Section 3.3.2).

3.2.4 Deploy Time Weaving for General Classes

We just saw that deploy time weaving generates, at deployment time, an advised class for each
application of an aspect ofASPECTJ2EE. Let us now consider the more general case, in which
the target class is not an EJB.

It is instructive to compare the advising of EJBs (Figure 3.4) with the general structure of
shakein classes, as depicted in Figure 2.5. We see that the diagrams are similar in making each
aspect application into aJAVA class. However, Figure 3.4 adds two factors to the picture: First,
the generation of instances ofACCOUNT is controlled by an externalfactory class. Second is the
fact that the classAccount is abstract.

Together these two make one of the key properties of EJBs, namely the fact that an EJB does
not have aforge facet(Section 2.1.1). Instead, the framework imposes a requirement that all
instances of the class are obtained from an external class, thehome object, which follows the
ABSTRACT FACTORY design pattern.

This property makes it possible to apply an aspect, a service, or a shakein toall instances of
a certain class. When applying the deploy time weaving technique to non-EJB classes, one may
chose to degenerate the forge facet of the target class, as in EJBs, or in the case that this is not
possible, make sure that the correct constructors are invoked in the code.

3.3 TheASPECTJ2EE Programming Language

Having described the shakeins construct and deploy-time weaving, we are ready to describe the
ASPECTJ2EElanguage.

The syntax ofASPECTJ2EEis a variant ofASPECTJ. The semantics ofASPECTJ2EE-aspects
is based on a (limited) implementation of the shakein concept. Hence, aspects inASPECTJ2EE,
unlike in ASPECTJ, do not have a global effect, and are woven into the application at deployment
time, rather than compile time.

When compared to shakeins, the main limitation ofASPECTJ2EE-aspects(henceforth just
“aspects”, unless noted otherwise), is that their application to classes is governed by an exter-
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nal deployment descriptor file, written in XML. Accordingly, ASPECTJ2EEdoes not provide a
syntax for explicitly applying aspects to classes. Consequently, the integration of aspects intoAS-
PECTJ2EEis not complete. Indeed,ASPECTJ2EEsuffers from two XML-JAVA coupling issues:
(i) JAVA code using a class whose generation is governed by XML is coupled with this XML code,
and (ii) XML file applying an aspect to aASPECTJ2EEclass is coupled with theASPECTJ2EE
names. However, in contrast with JBoss aspects, the detection of errors due to such coupling, i.e.,
using wrong class names or illegal or empty pointcut expressions, is not at run time, but rather at
deployment time.

Comparing theASPECTJ2EEversion of shakeins with the theoretical description of the con-
cept, we find that the benefits (see Section 2.3) are preserved:

1. Selective applicationis available; aspects are applied only to classes specified in the deploy-
ment descriptor.

2. Non-destructive applicationis preserved. However, instances are obtained using Home ob-
jects (factories) only. Therefore, the programmer, wearing the hat of anapplication assem-
bler [82, Sect. 3.1.2], can dictate which combinations of aspect application are available.
For example, it is possible to ensure that all instances ofACCOUNT are subjected to a secu-
rity aspect.

3. Explicit and Flexible Orderingis provided by the XML binding language.

4. Compositionis supported; special XML syntax can be used for composing two or more
aspects. However, composed aspects can have no parameters.

5. Configuration parametersare available; the deployment descriptor is used for argument
passing.

6. Repeated applicationis fully supported.

7. Parameter checkingis supported in a very limited manner.

Section 3.3.1 presents the language syntax. The application of aspects through deployment
descriptors is the subject of Section 3.3.2. Section 3.3.3 explains how deploy-time weaving can
implement the various kinds of join points. Finally, Section 3.3.4 gives a brief overview of the
standard aspect library.

3.3.1 Language Syntax

The major difference betweenASPECTJ2EEandASPECTJ is thatASPECTJ2EEsupports param-
eterized aspects. For example, Figure 3.5 shows the definition of a role-based security shakein
that accepts two parameters. The first parameter,secured , is a pointcut definition specifying
which methods are subjected to a security check. The second one,required Role , is the user
role-name that the check requires.

Parameter values must be known at deploy time. Accordingly, there are four kinds of parame-
ters for aspects:

• Type parameters, preceded by the keywordclass . The type can be restricted (like type
parameters inJAVA generics) using theimplements and extends keywords. These
restrictions are the only parameter checking offered byASPECTJ2EE.

• Pointcut parameters, preceded by thepointcut keyword.
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aspect Security[ pointcut secured(), String requiredRole] {
before () : secured() {

if (!userInRole(requiredRole)) {
throw new RuntimeException( "Security Violation" );

}
}

private boolean userInRole(String roleName) {
// Check if the currently active user has the given role...

}
}

Figure 3.5: The definition of a role-basedSecurity aspect inASPECTJ2EE

• String parametersand primitive type parameters, preceded by the type name (String ,
int , boolean , etc.). Arrays of these types are also supported.

In contrast withASPECTJ, the scope of a specific aspect application inASPECTJ2EEis limited
to its target class. Therefore, any pointcut that refers to join points in other classes is meaning-
less. Accordingly,ASPECTJ2EEdoes not have acall join point, since it refers to the calling
point, rather than the execution point, of a method. To apply advice to method execution, only
anexecution join point can be used. This restriction is a direct result of the shakein semantic
model, and it eliminates the confusion associated with thecall join point in relation to inheri-
tance (as discussed in Section 2.1.2).

All other join point kinds are supported, but with the understanding that their scope is limited
to the target class; for example, a field-set join point for apublic field will not capture access
to the field from outside its defining class.ASPECTJ2EEalso introduces a new kind of join point
for handling remote invocation of methods.

Since the application of aspects inASPECTJ2EEis explicit, it does not recognize theAS-
PECTJ statementdeclare precedence . Introductions are also not supported, so neither are
declare parents statements. Similarly, sinceASPECTJ2EEaspects are never instantiated
by themselves, the aspect instantiation keywords (issingleton , pertarget , perthis ,
percflow , andpercflowbelow ) are not part of theASPECTJ2EEsyntax.

Finally, there is a subtle syntactical difference due to the “individual target class” se-
mantics of ASPECTJ2EE aspects: The definition of a pointcut should not include the tar-
get class name as part of method, field or constructor signatures. Only the member’s name,
type, access level, list of parameter types, etc. can be specified. For example, the sig-
nature matching anypublic void method accepting a singleString argument is writ-
ten ASPECTJ as public void *.*(String) . The same signature should be written as
public void *(String) in ASPECTJ2EE. TheASPECTJ form applies to the methods with
this signature inall classes, whereas theASPECTJ2EEform applies only to such methods in the
class to which the containing aspect is applied.

3.3.2 The Deployment Descriptor

In ASPECTJ, the application of aspects to classes is specified declaratively. Yet the process is not
completely transparent: the application assembler must take explicit actions to make sure that the
specified aspect application actually takes place. In particular, he must remember to compile each
core module with all the aspects that may apply to it. (Or else, an aspect with global applicability
may not apply to certain classes if these classes were not compiled with it.)
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The order of application of aspects inASPECTJ is governed bydeclare precedence
statements; without explicit declarations, the precedence of aspects inASPECTJ is undefined.
Also, ASPECTJ does not provide any means for passing parameters to the application of aspects
to modules.

In contrast, the shakein semantics in general, andASPECTJ2EEin particular, require an ex-
plicit specification of each application of an aspect to a class, along with any configuration parame-
ters. This specification could have been done as part of the programming language. But, following
the conventions of J2EE, and in the sake of minimizing the syntactical differences betweenAS-
PECTJ2EEandASPECTJ, we chose to place this specification in anexternalXML deployment
descriptor.5

In fact, we shall see that the XML specification is in essence the abstract syntax tree, which
would have been generated from parsing the same specification if written inside the programming
langauge. Figure 3.6 gives an example, showing the sequence of application of aspects toAC-
COUNT which generated the classes in Figure 3.4. Overall, four aspects are applied to the bean:
Lifecycle , Persistence , Security , andTransactions . All of these are drawn from
theaspectj2ee.core aspect library.

The figure shows the XML element describing beanACCOUNT. (In general, the deployment
descriptor contains such entities for each of the beans, along with other information.) We follow
the J2EE convention, in that the bean is defined by the<entity> XML element (line 1.

Element<entity> has several internal elements. The first four,<ejb-name> , <home>,
<remote> , and<ejb-class> (lines 2–5), specify theJAVA class names that make this bean.
These are all part of standard J2EE and will not concern us here.

Following are elements of type<apply> , which are anASPECTJ2EEextension. Each of
these specifies an application of an aspect to the bean. Each<apply> element must have a
property called<aspect> , which names the aspect to be applied. For example, line 6 in the
figure specifies that the aspectaspectj2ee. core. Lifecycle is applied toACCOUNT.

If the applied aspect is parameterized, then<parameter> sub-elements can be used. Each
<parameter> element has aname property, and its body specifies the actual parameter value.
Consider for example theSecurity aspect (Figure 3.5). In Figure 3.6 (line 17), we see that
the actual value for thesecured pointcut formal parameter isexecution (*(..)) (i.e., the
execution of any method). Similarly, formal string parameterrequired Role was actualized
with value"User" (line 18).

Thus, the third<apply> element is tantamount to configuring the aspect with the following
pseudo-syntax used in the previous Chapter:

Security[ execution (*(..)), "User" ] . (3.1)

Array parameters are specified using any number of<item> elements. For example, the
fieldMap property of thePersistence aspect is initialized (lines 11–14) as a two-items
array.

In support ofexplicit and flexible ordering, the order of<apply> elements specifies the order
by which aspects are applied to the bean. Intra-aspect precedence (where several advices from the
same aspect apply to a single join point) is handled as inASPECTJ, i.e., by order of appearance of
advices.

We can generalize example (3.1) above to write the entire sequence of application of aspects
to the bean, along with their parameters. In total, there are nine such parameters. These, together
with the aspect names, would have made the programming language equivalent of the applica-
tion sequence in Figure 3.6 cumbersome and error-prone. We found that the XML notation is a
convenient replacement to developing syntax for dealing with this unwieldiness.

5In Java EE 5, deployment descriptors are optional, but still fully supported.
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1<entity id= "Account" >
2 <ejb-name>Account</ejb-name>
3 <home>aspectj2ee.demo.AccountHome</home>
4 <remote>aspectj2ee.demo.Account</remote>
5 <ejb-class>aspectj2ee.demo.AccountBean</ejb-class>
6 <apply aspect= "aspectj2ee.core.Lifecycle" />
7 <apply aspect= "aspectj2ee.core.Persistence" >
8 <parameter name= "PKClass" >java.lang.String</parameter>
9 <parameter name= "PKField" >serialNumber</parameter>

10 <parameter name= "table" >ACCOUNTS</parameter>
11 <parameter name= "fieldMap" >
12 <item>serialNumber:SERIAL</item>
13 <item>balance:BALANCE</item>
14 </parameter>
15 </apply>
16 <apply aspect= "aspectj2ee.core.Security" >
17 <parameter name= "secured" >execution(*(..))</parameter>
18 <parameter name= "requiredRole" >User</parameter>
19 </apply>
20 <apply aspect= "aspectj2ee.core.Transactions" >
21 <parameter name= "reentrant" >false</parameter>
22 <parameter name= "requiresnew" >
23 execution(deposit(..)) || execution(withdraw(..))
24 </parameter>
25 <parameter name= "required" >
26 execution(*(..)) && !requiresnew()
27 </parameter>
28 </apply>
29</entity>

Figure 3.6: A fragment of an EJB’s deployment descriptor specifying the applica-
tion of aspects to theACCOUNT bean.

Note thatACCOUNT can be viewed as an entity bean with container-managed persistence
(CMP EJB [82, Chap. 10]) simply because it relies on the core persistence aspect, which parallels
the standard J2EE persistence service. Should the developer decide to use a different persistence
technique, that persistence system would itself be defined as anASPECTJ2EEaspect, and applied
to ACCOUNT in the same manner. This is parallel to bean-managed persistence beans (BMP EJBs)
in the sense that the persistence logic is provided by the application programmer, independent of
the services offered by the application server. However, it is completely unlike BMP EJBs in that
the persistence code would not be tangled with the business logic and scattered across several bean
and utility classes. In this respect,ASPECTJ2EEcompletely dissolves the distinction between
BMP and CMP entity beans.

TheACCOUNT bean example does not use every feature supported byASPECTJ2EE. In par-
ticular, it demonstrates selective application, non-destructive application (since the base class re-
mains untouched), explicit and flexible ordering, and configuration parameters.Repeated applica-
tion is not shown, but it can be brought into effect simply by having multiple<apply> elements
specifying the same aspect, probably with different parameters each time. Support forcomposi-
tion is achieved using the<define-aspect> element. Figure 3.7 is an example that composes
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two applications of the security aspect to define theMySecurity aspect (originally defined as
fragment (2.1) in Section 2.3.2). Once defined, theMySecurity aspect can be used just like any

<define-aspect name= "MySecurity" >
<apply aspect= "aspectj2ee.core.Security" >

<parameter name= "secured" >Pc</parameter>
<parameter name= "requiredRole" >Client</parameter>

</apply>
<apply aspect= "aspectj2ee.core.Security" >

<parameter name= "secured" >Pt</parameter>
<parameter name= "requiredRole" >Teller</parameter>

</apply>
</define-aspect>

Figure 3.7: Defining theMySecurity aspect using aspect composition (Pc and
Pt symbolize actual pointcut definitions)

other aspect, including in the composition of other aspects. A limitation of the aspect composition
syntax inASPECTJ2EE, however, is that it does not allow composed aspects to be parameterized;
the composition must provide actual value for all parameters used by its constituent aspects.

In some ways, the use of XML configuration files inASPECTJ2EEis reminiscent of the con-
figuration method used by Spring (Section 2.4.2). However, unlike the Spring configuration files,
the deployment descriptors inASPECTJ2EE(and indeed, in standard J2EE as well) are processed
during deployment, before the program is ever executed. Thus, any configuration errors, includ-
ing type errors in parameter passing, are discovered ahead of execution (as opposed to run-time
configuration parsing in Spring).

3.3.3 Implementing Advice by Sub-Classing

ASPECTJ2EEsupports each of the join point kinds defined inASPECTJ, except forcall , since
call advice is applied at theclient (caller) site and not to the main class. We next describe how
advice are woven into the entity bean code in each supported kind of join point.

Execution Join Points.

The execution ( methodSignature ) join point is defined when a method is invoked and
control transfers to the target method.ASPECTJ2EEcapturesexecution join points by gen-
erating advised methods in the advised class, overriding the inherited methods that match the
execution join point. Consider for example the advice in Figure 3.8(a), whose pointcut refers to
the execution of thedeposit() method. This is abefore () advice which prepends a print-
out line to matched join points. When applied toACCOUNT, only one join point, the execution
of deposit() , will match the specified pointcut. Hence, in the advised class, thedeposit()
method will be overridden, and the advice code will be inserted prior to invoking the original code.
The resulting implementation ofdeposit() in the advised class appears in Figure 3.8(b).

Recall that only instances of the terminal advised class exist in the system, so every call to the
advised method (deposit() in this example) would be intercepted by means of regular polymor-
phism. Overriding and refinement can be used to implementbefore () , after () (including
after () returning andafter () throwing ), andaround () advice. Witharound ()
advice, theproceed keyword indicates the location of the call to the inherited implementation.

The example in Figure 3.9 demonstrates the support forafter () throwing advice. The
advice, listed in part (a) of the figure, would generate a printout if thewithdraw() method
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before ( float amount):
execution (deposit( float )) && args (amount) {

System.out.println( "Depositing " + amount);
}

(a) Sampleexecution advice for thedeposit() method

public void deposit( float amount) {
System.out.println( "Depositing " + amount);
super .deposit(amount);

}

(b) The resulting, advised version ofdeposit()

Figure 3.8: An example for weaving anexecution join point

resulted in anInsufficient Funds Exception . The exception itself is re-thrown, i.e., the
advice does not swallow it. The resulting advised method appears in Figure 3.9(b). It shows how
after () throwing advice are implemented by encapsulating the original implementation in a
try /catch block.

after () throwing (InsufficientFundsException ex)
throws InsufficientFundsException: execution (withdraw(..)) {

System.out.println( "Withdrawal failed: " + ex.getMessage());
throw ex;

}

(a) Sampleafter throwing advice for anexecution join point

public void withdraw( float amount)
throws InsufficientFundsException {

try {
super .withdraw(amount);

}
catch (InsufficientFundsException ex) {

System.out.println( "Withdrawal failed: " + ex.getMessage());
throw ex;

}
}

(b) The resulting, advised version ofwithdraw()

Figure 3.9: An example for weavingafter throwing advice in an
execution join point

An execution join point may refer toprivate methods. Since such methods cannot
be overridden in subclasses, theASPECTJ2EEweaver generates a new, advised version of the
method—and then overrides any method thatinvokesthe private method, so that the callers will
use the newly-generated version of the private callee rather than the original. The overriding
version of the callers includes a complete re-implementation of each caller’s code, rather than
using refinement, so that only the new version of the private callee will be used. The only exception
is where a private method is invoked by a constructor, which cannot be replaced by an overriding
version.ASPECTJ2EEwill issue a warning in such cases.
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This technique is used not only withexecution join points, but whenever an advice applies
to code inside aprivate method (e.g., when a field access join point is matched by code inside
one).

A similar problem occurs withfinal andstatic methods. However, such methods are
disallowed by the J2EE specification and may not be included in EJB classes.

Constructor Execution Join Points.

The constructor execution join point inASPECTJ is defined using the same keyword as regular
method execution. The difference lies in the method signature, which uses the keywordnew
to indicate the class’s constructor. For example, the pointcutexecution ( new(..)) would
match the execution of any constructor in the target class.

Unlike regular methods, constructors are limited with regard to the location in the code where
the inherited implementation (super () ) must be invoked. The invocation must be the first state-
ment of the constructor, and in particular it must occur before any field access or virtual method
invocation. Hence, join points that refer to constructor signatures can be advised, but any code
that executes before the inherited constructor (before () advice, or parts ofaround () advice
that appear prior to the invocation ofproceed () ) is invalid.

An around () advice for constructor execution that does not contain an invocation of
proceed () would be the equivalent of aJAVA constructor that does not invokesuper () (the
inherited constructor). This is tantamount to having an implicit call tosuper () , and is valid only
if the advised class contains a constructor that does not take any arguments.

Field Read and Write Access Join Points.

Field access join points match references to and assignments of fields.ASPECTJ2EEpresents
no limitations on advice that can be applied to these join points. However, if a field is visible
outsideof the class (e.g., apublic field), then anyexternalaccess will bypass the advice. It is
therefore recommended that field access will be restricted toprivate fields and EJBattributes
only. Recall that attributes are not declared as fields; rather, they are indicated by the programmer
usingabstract getter and setter methods. These methods are then implemented in the concrete
bean class (in J2EE) or in the root advised class (inASPECTJ2EE).

If no advice is provided for a given attribute’s read or write access, the respective method im-
plementation in the root advised class would simply read or update the class field. The field itself
is also defined in the root advised class. However, an attribute can be advised usingbefore () ,
around () andafter () advice, which would affect the way the getter and setter method are
implemented.

If an advice is applied to a field (which is not an attribute), all references to this field by method
in the class itself are advised by generating overriding versions of these methods. However, since
a private field is not visible even to subclasses, this might require generating a new version of
the field, whichhides[117, Sect. 8.3.3] the original declaration. In such cases, any method that
accesses the field must be regenerated, even where the advice does not cause any code alteration,
so that the overriding version will access the new field. In addition, the advised class’s constructor
initializes the new field by copying the value of the hidden one (which was initialized by the
inherited constructor).

Exception Handler Join Points.

Thehandler join point can be used to introduce advice intocatch blocks for specific exception
types. Since thecatch block per-se cannot be overridden, advising such a join point results in
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a new, overriding version of the entire method containing the advisedcatch block. Most of
the code remains unchanged from the original, but the code inside thecatch block is altered in
accordance with the advice.

Remote Call Join Points.

The remotecall join point designator is a new keyword introduced inASPECTJ2EE. Seman-
tically, it is similar to ASPECTJ’s call join point designator, defining a join point at a method
invocation site. However, it only applies to remote calls to various methods; local calls are unaf-
fected.

Remote call join points are unique, in that their applied advice does not appear in the ad-
vised sub-class. Rather, they are implemented by affecting the stub generated at deploy time for
use by EJB clients (such as_Account_Stub in Figure 3.4). For example, thearound ()
advice from Figure 3.10(a) adds printout code both before and after the remote invocation of
Account.deposit() . The generated stub class would include adeposit() method like
the one shown in part (b) of that figure. Since the advised code appears in the stub, rather than in
a server-side class, the output in this example will be generated by the client program.

around (): remotecall (deposit(..)) {
System.out.println( "About to perform transaction." );
proceed ();
System.out.println( "Transaction completed." );

}

(a) Sample advice for a methoddeposit ’s remotecall join point

public void deposit( float arg0) {
System.out.println( "About to perform transaction." );
// ... normal RMI/IIOP method invocation code ...
System.out.println( "Transaction completed." );

}

(b) The resulting, advised version ofdeposit()

Figure 3.10: (a) Sample advice for a method’sremotecall join point,
and(b) the resultingdeposit() method generated in the RMI stub
class.

Remote call join points can only refer to methods that are defined in the bean’s remote in-
terface. Advice usingremotecall can be used to localize tier-cutting concerns, as detailed in
Section 3.4.

Control-Flow Based Pointcuts.

ASPECTJ includes two special keywords,cflow andcflowbelow , for specifying control-flow
based limitations on pointcuts. Such limitations are used, for example, to prevent recursive appli-
cation of advice [152]. Both keywords are supported byASPECTJ2EE.

The manner in which control-flow limitations are enforced relies on the fact that deployment
can be done in a completely platform-specific manner, since at deploy time, the exact target plat-
form (JVM implementation) is known. Different JVMs use different schemes for storing a stack
snapshot in instances of thejava.lang.Throwable class [53] (this information is used, for
example, by the methodjava. lang. Exception. print Stack Trace() ). Such a stack
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snapshot (obtained via an instance ofThrowable , or any other JVM-specific means) can be
examined in order to test forcflow /cflowbelow conditions at runtime.

An alternative implementation scheme relies onThreadLocal objects [112]. The advice
application would result in aThreadLocal flag that will be turned on or off as various methods
are entered or exited. At the target join point, the flag’s value will be examined to determine if the
cflowbelow condition holds, and the advice should be executed. The one-instance-per-thread
nature ofThreadLocal objects ensures that this flag-based scheme will function properly in
multi-threaded applications.

3.3.4 The Core Aspects Library

ASPECTJ2EE’s definition includes a standard library of core aspects. Four of these aspects were
used in theACCOUNT example, as shown in Figure 3.4. Here is a brief overview of these four,
and their effect on the advised classes:

1. Theaspectj2ee.core.Lifecycle aspect (used to generated the root advised class)
provides a default implementation to the J2EE lifecycle methods. The implementations
of setEntityContext() , unsetEntityContext , andget Entity Context()
maintain the entity context object; all other methods have an empty implementation. These
easily-available common defaults make the development of EJBs somewhat easier (com-
pared to standard J2EE development); the user-providedAccount Bean class is now
shorter, and contains strictly business logic methods.6

2. The aspectj2ee.core.Persistence aspect provides a CMP-like persistence ser-
vice. The attribute-to-database mapping properties are detailed in the parameters passed to
this aspect in the deployment descriptor. This aspect advises some of the lifecycle methods,
as well as the attribute setters (for maintaining a “dirty” flag), hence these methods are all
overridden in the advised class.

3. The aspectj2ee.core.Security aspect can be used to limit the access to various
methods based on user authentication. This is a generic security solution, on par with the
standard J2EE security service. More detailed security decisions, such as role-based vari-
ations on method behavior, can be defined using project-specific aspects without tangling
security-related code with the functional concern code.

4. Finally, theaspectj2ee.core.Transactions aspect is used to provide transaction
management capabilities to all business-logic methods. The parameters passed to it dictate
what transactional behavior will be applied to each method. Transactional behaviors sup-
ported by the J2EE platform include methods that must execute within a transaction context,
and will create a new transaction if none exists; methods that must execute within an existing
transaction context; methods that are neutral to the existence of a transaction context; and
methods that will fail to run within a transaction context. The list of methods that belong to
each group is specified with a pointcut parameter passed to this aspect.

3.4 Innovative Uses for AOP in Multi-Tier Applications

The use of aspects in multi-tier enterprise applications can reduce the amount of cross-cutting
concerns and tangled code. As discussed in Section 3.1, the core J2EE aspects were shown to

6The fact that the fields used to implement the attributes, and the concrete getter and setter method for these at-
tributes, appear inAdvAccount _Life cycle (in Figure 3.4) stems from the fact that this is the root advised
class, and is not related to theLifecycle aspect per se.
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be highly effective to this end, and the ability to define additional aspects (as well as alternative
implementations to existing ones) increases this effectiveness and enables better program modu-
larization.

But ASPECTJ2EEalso allows developers to confront a different kind of cross-cutting non-
functional concerns: aspects of the software that are implemented in part on the client and in part
on the server. Here, the cross-cutting is extremely acute as the concern is implemented not just
across several classes and modules, but literally across programs. We call thesetier-cutting con-
cerns. In the context ofASPECTJ2EE, tier-cutting concerns are applied to the business methods
of EJBs.

The notion of remote pointcuts was independently discovered by Nishizawa, Chiba, and Tat-
subori [180].

The remainder of this section shows that several key tier-cutting concerns can be represented
as single aspect by using theremotecall join point designator. In each of these examples, the
client code is unaffected; it is the RMI stub, which acts as a proxy for the remote object, which is
being modified.

3.4.1 Client-Side Checking of Preconditions

Method preconditions [169] are commonly presented as a natural candidate for non-functional
concerns being expressed cleanly and neatly in aspects. This allows preconditions to be specified
without littering the core program, and further allows precondition testing to be easily disabled.

Preconditions should normally be checked at the method execution point, i.e., in the case
of multi-tier applications, on the server. However, a precondition defines a contract that binds
whomever invokes the method. Hence, by definition, precondition violations can be detected and
flagged at the invocation point, i.e., on the client. In a normal program, this matters very little;
but in a multi-tier application, trapping failed preconditions on the client can prevent the round-
trip of a remote method invocation, which incurs a heavy overhead (including communications,
parameter marshaling and un-marshaling, etc.).

Figure 3.11 presents a simple precondition that can be applied to theACCOUNT EJB: neither
withdraw() nor deposit() are ever supposed to be called with a non-positive amount as a
parameter. If such an occurrence is detected, aPrecondition Failed Exception is thrown.
Using two named pointcut definitions, the test is applied both at the client and at the server.

In addition to providing a degree of safety, such aspects decrease the server load by blocking
futile invocation attempts. In a trusted computing environment, if the preconditioned methods are
invoked only by clients (and never by other server-side methods), the server load can be further
reduced by completely disabling server-side tests.

When using aspects to implement preconditions, always bear in mind that preconditions test
for logically flawed states, rather than states that are unacceptable from a business process point
of view. Thus, preventing the withdrawal of excessive amounts should be part ofwithdraw() ’s
implementation rather than a precondition.

3.4.2 Symmetrical Data Processing

By adding code both at the sending and receiving ends of remotely-invoked methods, we are able
to create what can be viewed as an additional layer in the communication stack. For example,
we can add encryption at the stub and decryption at the remote tie, for increased security; or we
can apply a compression scheme (compressing information at the sender, decompressing it at the
receiver) to reduce the communications overhead; and so forth.

Consider an EJB representing a university course, with a methodregister() that accepts
aVector of student names (String s) to be registered to that course. The aspect in Figure 3.12
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public aspect EnsurePositiveAmounts {
pointcut clientSide( float amount):

( remotecall ( public void deposit( float )) ||
remotecall ( public void withdraw( float ))) && args (amount);

pointcut serverSide( float amount):
( execution ( public void deposit( float )) ||
execution ( public void withdraw( float ))) && args (amount);

before ( float amount):
clientSide(amount) || serverSide(amount) {

if (amount <= 0.0)
throw new PreconditionFailedException(

"Non-positive amount: " +amount);
}

}

Figure 3.11: An aspect that can be used to apply precondition testing (both client-
and server-side) to theACCOUNT bean

shows how the remote invocation of this method can be made more effective by applying com-
pression. Assume that the classCompressedVector represents aVector in a compressed
(space-efficient) manner. Applying this aspect to theCOURSEEJB would result in a new method,
registerCompressed() , added to the advised class. Unlike most non-public methods, this
one would be represented in the class’s RMI stub, since it is invoked by code that is included in
the stub itself (that code would reside in the advised stub for theregister() method).

public aspect CompressRegistrationList {
around (Vector v): remotecall ( public void register(Vector))

&& args (v) {
CompressedVector cv = new CompressedVector(v);
registerCompressed(cv);

}

private void registerCompressed(CompressedVector cv) {
Vector v = cv.decompress();
register(v);

}
}

Figure 3.12: An aspect for sending a compressed version of an argument over
the communications line; can be applied to the beanCOURSEwhich
contains aregister method

Less specific versions of the compression aspect (and of similar aspects, such as encryption)
can be developed, relying onJAVA ’s reflection mechanism to collect information about the method
arguments and then creating a compressed serialized version of the actual parameters. Addition-
ally, compression and encryption can be applied not only for arguments, but also for return values.
In this case, the aspect should useafter () returning advice for both theremotecall and
execution join points. Advice forafter () throwing can be used for processing excep-
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tions (which are often information-laden, due to the embedded call stack, and would hence benefit
greatly from compression).

3.4.3 Memoization

Memoization (the practice of caching method results) is another classic use for aspects. When
applied to a multi-tier application, this should be done with care, since in many cases the client
tier has no way to know when the cached data becomes stale and should be replaced. Still, it is
often both possible and practical, and usingASPECTJ2EEit can be done without changing any
part of the client program.

For example, consider a session EJB that reports international currency exchange rates. These
rates are changed on a daily basis; for the sake of simplicity, assume that they are changed every
midnight. The aspect presented in Figure 3.13 can be used to enable client-side caching of rates.

3.5 Summary

We presentedASPECTJ2EEas an important application and prime motivation for actual use of
the shakeins construct.ASPECTJ2EEis an aspect-oriented programming language, similar toAS-
PECTJ, whose aspects have a shakein semantics. The language shows that the shakeins semantics
integrates well with the current architecture of J2EE servers. It also makes it possible to think of
existing services as aspects, while unifying the deployment process of J2EE with aspect weaving
as in AOP. Also, the langauge shows that the shakeins semantics allows existing services to be
configured, and even applied multiple times. Such benefits are not possible with plain aspects.

By using deploy-time weaving,ASPECTJ2EEallows the programmer’s code to be advised
without being tampered with. Programmers can define methods that will provide business func-
tionality while being oblivious to the various services (transaction management, security, etc.) ap-
plied to these methods. (It is thecode, not the programmers, that is oblivious to the non-functional
concerns—an important distinction, no doubt [97].) With the exception of thecall , we showed
that all join point kinds can be implemented using deploy-time weaving.

To the existing repertoire of join pointsASPECTJ2EE adds a new join point kind,
remotecall . This join point makes it possible to add to the familiar services provided by
EJB containers.ASPECTJ2EEaspects usingremotecall can be used to unscatter and untangle
tier-cutting concerns, which in many cases can improve an application server’s performance. We
discussed in particular interesting such services, including client side checking of pre-conditions,
symmetrical data processing, and memoization.

In using the shakeins semantics, aspects inASPECTJ2EEare less general, and have a more
defined target, than theirASPECTJcounterparts. Also, even though the same aspect can be applied
(possibly with different parameters) to several EJBs, each such application can only affect its
specific EJB target. Therefore, we expectASPECTJ2EEaspects should be more understandable,
and the woven programs more maintainable.

We believe thatASPECTJ2EEopens a new world of possibilities to developers of EJB-based
applications, allowing them to extend, enhance and replace the standard services provided by EJB
containers with services of their own. EJB services can be distributed and used across several
projects; libraries of services can be defined and reused.

ASPECTJ2EEdoes not encompass the shakeins semantics in full. In particular, aspect appli-
cation is external to the language and is specified by an XML deployment descriptor file. The
file format is such that shakeins can be applied to EJBs only, and that un-shaked versions of such
a bean are not available to clients. To ease interoperability with existing J2EE applications, the
XML file format is an extension of the standard J2EE deployment descriptor format.
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public aspect CacheExchangeRates {
private static class CacheData {

int year;
int dayOfYear;
float value;

}

private Hashtable<String, CacheData> cache
= new Hashtable<String, CacheData>();

pointcut clientSide(String currencyName):
remotecall ( public float getExchangeRate(String))
&& args (currencyName);

around (String currencyName): clientSide(currencyName) {
Calendar now = Calendar.getInstance();
int currentYear = now.get(Calendar.YEAR);
int currentDayOfYear = now.get(Calendar.DAY_OF_YEAR);

// First, try and find the value in the cache
CacheData cacheData = cache.get(currencyName);
if (cacheData != null && currentYear = cacheData.year &&

currentDayOfYear == cacheData.dayOfYear)
return cacheData.value; // Value is valid; no remote invocation

// Value is not in cache: obtain normally
float result = proceed (currencyName); // remote call

// Cache the value for future reference
cacheData = new CacheData();
cacheData.year = currentYear;
cacheData.dayOfYear = currentDayOfYear;
cacheData.value = result;
cache.put(currencyName, cacheData);

}
}

Figure 3.13: A memoization aspect for caching results from a currency exchange-
rates bean

The J2EE framework, and theASPECTJ2EElanguage presented here, both use theABSTRACT

FACTORY design pattern to control object instantiation. However, there neither contains a mecha-
nism that prevents developers from bypassing the home object (i.e., the factory class) and obtain-
ing “raw”, unadvised versions of the beans. This is possible becauseASPECTJ2EEaspects, much
like J2EE services, operate within the standard object model, and do not alter the base classes
onto which the aspects/services are applied. To overcome this limitation, we suggest the factories
mechanism, discussed in Chapter 5.

But first, the following chapter presents JTL. This embedded language can serve as a superior
alternative toASPECTJ’s (andASPECTJ2EE’s) pointcut specification syntax—and much more.
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Chapter 4

JTL

Hast thou found any likeness for thy vision?

— A.C. Swinburne,Ave atque Vale

JTL (theJava Tools Language, pronouncedGee-tel) is a declarative language, belonging in the
logic-programming paradigm, designed for the task of selectingJAVA program elements. Two
primary applications were in mind at the time when the language was first conceived:

(a) Join-point selection for aspect-oriented programming, where JTL can serve as a powerful
substitute ofASPECTJ’s pointcut syntax.

The pointcut expressions ofASPECTJ select the points in the code onto which an aspect
is to be applied. The limited expressive power of the pointcut specification language of
ASPECTJ (as used in the original definition ofASPECTJ2EEin Chapter 3) has been noted
several times in the literature [126, 187]. JTL was designed to address these limitations,
providing greater flexibility to the shakeins mechanism—although it can also be integrated
into other AOP solutions as well.

(b) Expressing the conditions making up conceptsfor use in generic programming, including
multi-type concepts.

Concepts [106, 124, 210] are a key issue in generic programming, since they make explicit
the test of whether a given set of classes are legible as parameters for a given generic con-
struct. As a concept specification language, JTL can be used with shakeins, allowing each
shakein to explicitly limit the set of classes to which it can be applied.

JTL can also be used for other language extension tasks. The designers of frontier program-
ming paradigms and constructs often choose, especially when static typing is an issue, to test-bed,
experiment, and even fully implement the new idea by an extension to theJAVA programming
language. A prime component in the interaction of such an extension with the language core is
the mechanism for selecting program elements to which the extension applies. Examples that can
benefit from a tool like JTL include JAM [8], Chai [205], OpenJava [220], the host of type systems
supported by pluggable type systems [9], and many more.

JTL’s design took a special effort to adapt the logic to the task at hand, and to provide a
Query By Example[231] flavor to predicates, thereby minimizing theabstraction gapbetween
the query language and the queried domain. A number of techniques were used to this end: first,
manyJAVA keywords were adopted by JTL, e.g.,static program elements are matched by a
predicate namedstatic . Second, an effort was made to eliminate most of syntactical baggage of
PROLOG [83] such as commas, parenthesis, multiple rules, etc. Third, to simplify the evaluation
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semantics, the underlying computation isDATALOG [50]-based, i.e., there is no unification, no
infamous cuts of any color, etc. Most importantly, JTL offers higher level abstraction mechanisms
on top of the core logic programming—just as the looping constructs of high-level languages are
built on top of machine-level conditional branches.

As JTL took shape and grew older it became clear that it can be used not only for language
extension tasks, but also for other software engineering tasks, primarily as a tool to assist program-
mers understand the code they must modify. This particular problem of program understanding,
even if it is far from being entirely solved by JTL, is dear to our hearts: First, software develop-
ment activities in the industry include (and probably more and more so) the integration of new
functionalities in existing code. Second, maintenance remains a major development cost factor.

JTL’s focus is on the modules in which the code is organized: packages, classes, methods,
variables and parameters (including their names), types, accessibility level and other attributes.
JTL can also inspect the interrelations of these modules, including questions such as which classes
exist in a given unit, which methods does a given method invoke, etc.

Going beyond JTL’s core, two extensions were developed. One extension, developed by Itay
Maman, allows JTL to inspect the imperative parts of the code by means of dataflow analysis [67].
Such analysis can be used, for example, in micro-pattern detection [68]. Another extension, pre-
sented in Section 4.6, provides JTL with the ability to generate output text based on matched
program elements. This extends the use of JTL not only for search operations, but also forsearch-
and-replaceoperations, and beyond that into a full-fledged program transformation tool.

4.0.1 Two Introductory Examples

JTL’s syntax is terse and intuitive; just as inAWK [1], one-line programs are abundant, and
are readily wrapped within a single string. In many cases, the JTLpatternfor matching aJAVA

program element looks exactly like the program element itself. For example, the JTLpredicate1

public abstract void ()

matches all methods (of a given class) which are abstract, publicly accessible, returnvoid and
take no parameters. Thus, in a sense, JTL mimics the Query By Example idea.

As in the logic paradigm, a JTLprogram is a set of predicate definitions, one of which is
marked as the programgoal.

Even patterns which transcend the plainJAVA syntax should be readily understandable; for
example,

abstract class {
[ long | int ] field;
no abstract method;

}

matches abstract classes in which there is a field whose type is eitherlong or int and no abstract
methods. The first line in the curly brackets is anexistential quantifierranging over all class
members. The second line in the brackets is anegationof an existential quantifier, i.e., auniversal
quantifierin disguise, applied to this range.

4.0.2 The Underlying Model

Underlying JTL is aconceptualrepresentation of a program in a simply-typed relational database.
The JTL user can think of the interrogatedJAVA program as a bunch of program elements stored
in such a database.

1The terms “predicate” and “pattern” are used almost interchangeably; “pattern” usually refers to a unary predicate.
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JTL is declarative, sporting the simple and terse syntax and semantics of logic programming
for making database queries. JTL augments these with a number of enhancements that make it
even more concise and readable. Predicates are the basic programming unit. The language features
a set of native predicates (whose implementation is external to the language), with a library of pre-
defined predicates built on top of the native ones. Many of the native and pre-defined predicates
are conveniently named afterJAVA keywords.

Thus, the scheme of this database is defined by the set of native JTL predicates. Standard
library predicates and user-defined predicates, defined on top of the natives, can be thought of as
databaseviewsor pre-defined queries.

Interestingly,JAVA (and many other software systems) are best modeled asinfinite databases.
The reason is that inJAVA and in almost all programming languages, one cannot hope to obtain
all user code which uses a certain program element stored in a software library. Similarly, the list
of classes that inherit from a given class is unbounded. This is quite the opposite of traditional
database systems, which rely on a finite, closed-world model.

The JTL processor analyzes the predicates presented to it, determining whether they are open-
ended, i.e., the size of the result they return is unbounded. In practice, only a finite approximation
of the infinite database is stored; an open-ended predicate can be thought as a query whose size
increases indefinitely with that of the approximation.

Note that this conceptual representation does not dictate any concrete representation for the
JTL implementation. JTL is applicable to several formats of program representation, ranging from
program source code, going through AST representations,JAVA reflection objects, BCEL [13]
library entities, to strings representing the names of program elements. In fact, JTL’sJAVA API is
characterized by input- and output- data representation flexibility, in that JTL calls can accept and
return data in a number of supported formats.

We stress that JTL can be implemented in principle on top of any source code parser, including
theJAVA compiler itself.

Two central concerns in the language design werescalability and thesimplificationof the
idiosyncracies of logic programming.

We found, in accordance with the experience reported by Hajiyev, Verbaere and More with
their CodeQuestsystem [128], that the underlying relational model, together with combinations
of bottom-up and top-down evaluation strategies thatDATALOG makes possible, makes a major
contribution to scalability.

For the sake of elegance and brevity of expression, JTL features specific constructs for set
manipulation, quantification and other means that eliminate much of the need for loops (recursive
calls in the logic programming world). As a result, unlikeDATALOG andPROLOG queries, JTL
predicates are defined by a single rule, written in a handful of lines, and often in a single line.

Underlying JTL’s syntax and semantics is first order predicate logic with no function symbols
and augmented with transitive closures, denoted FOPL* . The first order logic represented by JTL
is restricted to finite structures (assuming a given database approximation). An inherent difficulty
with FOPL* * is that it allows one to make cyclic and senseless statements such as “predicatep
holds if and and only if the negation ofp holds.”. The language pre-processor therefore restricts
queries to toDATALOG with stratified negation [223]. This allows us to be enjoy the theoretical
advantages of the formalism, includingmodular specification, polynomial time complexity, and
a wealth ofquery optimization techniques[119]. Indeed, the JTL compiler (under development
by Itay Maman and others) will generateDATALOG output for an industrial-strengthDATALOG

engine.
An interesting contribution of the work in JTL is in demonstrating that a simple query-by-

example like syntax is possible for many tasks of querying OO programs, and in showing that
this syntax stands on a solid theoretical ground. It may be possible to put together aJAVA -like
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syntax forJAVA queries in an ad hoc fashion. The challenge we took upon ourselves was the
combination of the sound underlying computational model and the query-by-example front end.
Also, in using aDATALOG-based model (and in contrast withPROLOG as some other recent tools
do) we achieve a termination guarantee, and the wealth of theory on database query optimization
for concrete scalable implementation.

SQL, and more generally, the relational model was sometimes used for software query [208].
However, as Consens, Mendelzon and Ryman [69] observed, program analysis frequently requires
transitive closure. This is the reason that JTL allows recursion, and is similar in its computational
expressive power to Consents et al.’sGraphingsystem.

Chapter outline. Section 4.1 is a brief language tutorial, which shows how JTL can be used
to inspect the non-imperative aspects ofJAVA code, i.e., everything but the method bodies. An
explanation of the semantics is then presented in Section 4.2.

The key uses of JTL in the domain of aspect-oriented programming are discussed in Sec-
tion 4.3, followed by an overview of additional, unrelated uses (Section 4.4). Related work about
query languages is discussed in Section 4.5.

Section 4.6 presents the language-transformation extensions, and Section 4.7 presents uses for
this extension, in aspect-oriented development and elsewhere. Related work on program transfor-
mation is discussed in Section 4.8. Section 4.9 concludes.

Acknowledgement. The JTL language was co-developed with Itay Maman in the Technion fac-
ulty of Computer Science. This includes the language definition and its theoretical foundation
(Sections 4.1 and 4.2), the survey of alternative query languages (Section 4.5), and the discus-
sion of additional uses for the language (Section 4.4). All other sections of this chapter represent
original research by the current author.

4.1 The JTL Language

This section gives a brief tutorial of JTL, assuming some basic familiarity with logic program-
ming. The main issues to note here are the languagesyntax, in which aJAVA program element
is matched by a JTL pattern which is very similar in structure to that element (see Section 4.1.1),
and theextensionsto the logic paradigm, such as argument list patterns, transitive closure standard
predicates, and quantifiers which make it possible to achieve many programming tasks without
recursion.

The two most important data types, what we callkinds, of JTL are (i)MEMBER, which rep-
resents all sorts of class and interface members, including function members, data members,
constructors, initializers and static initializers; and (ii)TYPE, which stands forJAVA class es,
interface s, andenums, as well asJAVA ’s primitive types such asint . Additional types in-
cludePACKAGEandSTRING. Compound kinds includeMEMBERS(a list of elements of kind
MEMBER), TYPES(a list ofTYPEelements), etc.

A JTL program is a set of definitions of named logicalpredicates. Execution begins by select-
ing a predicate to execute as agoal.

As in PROLOG, predicate names start with a lower-case letter, whilevariablesand parameters
names start with a capital letter. Identifiers may contain letters, digits, or an underscore. Addi-
tionally, the final characters of an identifier name may be “+” (plus), “* ” (asterisk), or “’ ” (single
quote).
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4.1.1 Simple Patterns

Many JAVA keywords are native patterns in JTL, carrying essentially the same semantics. For
example, the keywordint is also a JTL patternint , which matches either fields of typeint or
methods whose return type isint . The patternpublic matches allpublic program elements,
including public class members (e.g., fields) and public classes. Henceforth, our examples shall
use these keywords freely.

Not all JTL natives areJAVA keywords. A simple example isanonymous , defined onTYPE,
which matches anonymous classes.

Some patterns (likeabstract ) are overloaded, since they are applicable both to types and
members. Others are monomorphic, e.g.,class is applicable only toTYPE.

Another example is patterntype , defined only onTYPE, which matches all values ofTYPE.
This, and the similar patternmember (defined onMEMBER) can be used to break overloading
ambiguity.

JTL has two kinds of predicates:nativeandcompound. Native predicates are predicates whose
implementation is external to the language. In other words, in order to evaluate native predicates,
the JTL processor must use an external software library accessing the code. Native patterns are
therefore declared (in a pre-loaded configuration file) but not defined by JTL.

In contrast, compound patterns are defined by a JTL expression using logical operators. The
pattern

public , int (4.1)

matches allpublic fields of typeint and allpublic methods whose return type isint . As
in PROLOG, conjunction is denoted by a comma. In JTL however, the comma is optional; patterns
separated by whitespace are conjuncted. Thus, (4.1) can also be written aspublic int . As a
matter of style, the JTL code presented henceforth denotes conjunction primarily by whitespace;
commas are used mainly for readability—breaking long conjugation sequences into subsequences
of related predicates;

Disjunction is denoted by a vertical bar, while an exclamation mark stands for logical negation.
Thus, the pattern

public | protected | private

matchesJAVA program elements whose visibility is not default, whereas! public matches non-
public elements.

Logical operators obey the usual precedence rules, i.e., negation has the highest priority and
disjunction has the lowest. Square parenthesis may be used to override precedence, as in

! private [ byte | short | int | long ]

which matches non-private , integral-typed fields and methods.
A pattern definitionnames a pattern. After making the following two definitions,

integral := byte | short | int | long ;
enumerable := boolean | char ;

the newly defined patterns,integral andenumerable , can be used anywhere a native pattern
can be, as in e.g.,

discrete := integral | enumerable

67



Beyond the natives, JTL has a rich set of pre-definedstandardpatterns, including patterns
such asintegral , enumerable , discrete (as defined above),method , constructor
(both with the obvious semantics), the predicate

extendable := ! final type

(matching classes and interfaces which may have heirs), predicate

overridable := ! final ! static method

(methods which may be overridden), and many more.

4.1.2 Signature Patterns

Signature patterns pertain to (a) the name of classes or members, (b) the type of members, (c) ar-
gument list, (d) declared thrown exceptions, and (e) annotations (meta-data).

Name Patterns

A name patternis a regular expression preceded by a single quote, or a previously-declared name
without the quote. StandardJAVA regular expressions (as defined byjava. util. regex. -
Pattern ) are used, except that the wildcard character is denoted by a question mark rather than
a dot, since dots play an important role inJAVA program element names.

Name literals and regular expressions are quoted with single quotes; the closing quote can be
omitted if there is no ambiguity.

For example,void ’set[A-Z]?*’ method matches anyvoid method whose name
starts with “set ” followed by an upper-case letter.

If the name pattern does not contain any regular expression operators, as in

toString_p := ’toString method; (4.2)

then the pattern can be made clearer by using aname statement to declaretoString as a mem-
ber name and get rid of the quote. Thus, an alternative definition of (4.2) is

name toString;
toString_p := toString method;

(4.3)

(In truth, the above is redundant, since an implicitnamestatement pre-declares all methods of the
JAVA root classjava.lang.Object .)

Type Patterns

Type patternsmake it possible to specify theJAVA type of a non-primitive class member. A type
pattern is a regular expression preceded by a slash, e.g., pattern/java.util.?*/ method
matches all methods with a return type from thejava.util package or its sub-packages. The
closing slash is optional.

The distinction between type patterns and name patterns only makes sense for members. In
matching types, there is no such distinction, and both kinds of patterns or literals can be used.
(There is a difference, however, in the resulting string baggage, discussed in Section 4.6.)

The slash is not necessary for type names which were previously declared as such by a
typename declaration. For example,

typename java.io.PrintStream;
printstream_field := PrintStream field;

(4.4)
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matches any field whose type isjava.io.PrintStream . Thetypename statement in (4.4)
declaresjava.io.Serializable as a name of a type, similarly tonamestatements for mem-
ber names.

All the types (including classes, interfaces and enumerations) declared in thejava.lang
package are pre-declared as type names, includingObject , String , Comparable , and the
wrapper classes (Integer , Byte , Void , etc.).

Here is a redefinition oftoString_p pattern (4.3), which ensures that the matched method
returns aString :

toString_p := String toString method; (4.5)

Argument List Patterns

JTL provides special constructs which all but eliminate recursion. An important example isar-
gument list patterns, used for matching against elements of the list of arguments to a method.
(Internally, such lists are stored in a linked list of elements of kindTYPE, using standardPRO-
LOG-like head andtail relations.)

The most simple argument list is the empty list, which matches methods and constructors that
accept no arguments. Here is a rewrite of (4.5) using such a list:

toString_p := String toString(); (4.6)

Note that (4.6) does not match fields, which have no argument list, nor constructors, which have
no return type.

An asterisk (“* ”) in an argument list pattern matches a sequence of zero or more types. Thus,
the standard pattern

invocable := (*);

matches members which may take any number of arguments, i.e., constructors and methods, but
not fields, initializers, or static initializers. An underscore (“_”) is a single-type wildcard, and can
be used in either the argument list or in the return type. Hence,

public _ (_, String, *); (4.7)

matches any public method that accepts aString as its second argument, and returns any type.
(Again, constructors fail to match (4.7), since they have no return type.)

Argument list patterns are in fact an iteration construct, otherwise known as list queries. Sec-
tion 4.1.6 explains the full semantics and syntax of list queries, which are not limited to argument
list patterns.

Other Signature Patterns

There are patterns for matching thethrows clause of the signature, e.g.,

io_method := method throws /java.io.IOException;

There are also patterns which test for the existence or absence of specific annotations in a class,
a field or a method, and for annotation values. For example, the following pattern will match all
methods that have the@Override annotation:

@Override method

These are not discussed in further detail in this brief tutorial.
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4.1.3 Variables

It is often useful to examine the program element which is matched by a pattern. JTL employs
variable binding, similar to that ofPROLOG, for this purpose. For example, by using variableX
twice, the following pattern makes the requirement that the two arguments of a method are of the
same type:

firstEq2nd := method (X,X);

Similarly, the pattern

return_arg := RetType (*,RetType,*); (4.8)

matches any method whose return type is the same as the type of one of its arguments.
The binary predicateis forces equality of two variables, as in the following rewrite of (4.8):

return_arg := RetType (*,ParamType,*), RetType is ParamType;

The is predicate proves particularly useful when queries are used (see e.g. Section 4.1.7).

4.1.4 Predicates

Patterns are parameterless predicates. In general, it is possible to define predicates taking any num-
ber of parameters. As usual in logic programming,parametersare nothing more than externally
accessible variables. Consider for example the predicate

is_static[C] := static field C; (4.9)

which takes parameterC. When invoked with a specific value for parameterC, pattern
is_static matches onlystatic fields of that exact type.

Conversely, if the predicate is invoked without setting a specific value forC, then it will assign
to C the types of allstatic fields of the class against which it is matched. The semantics
by which a parameter to a predicate can be used aseither input or output is standard in logic
programming; the different assignments toCare made by the evaluation engine.

Note however that since JTL uses a database-,DATALOG-like semantics, rather than the recur-
sive evaluation engine ofPROLOG, each typeCsatisfying (4.9) will show only once in the output,
even if there two or more fields of that type.

(Note that because square brackets denote parameter passing, array types in JTL must be
preceded by a slash or enclosed in a pair of slashes, even for arrays of primitives or pre-declared
types. For example,/ int [] field will match any field of typeint [] .)

Native Predicates

JTL has several native parameterized predicates. The names of many of these areJAVA keywords.
For example, predicateimplements [I] holds for all classes which implement directly the
parameterI (an interface ).

This is the time to note that the predicatesimplements [I] andis_static[C] , just as
all other patterns presented so far, have a hidden argument, thereceiver, also called thesubjectof
the pattern, which can be referenced asThis or #.

Other native predicates of JTL includemembers[M] (true whenMis one ofThis ’s members,
either inherited or defined),defines[M] (true whenMis defined byThis ), overriding[M]
(true whenThis is a method which overridesM), inner[C] (true whenC is an inner class of
This ), and many more.
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The following example shows how a reference toThis is used to define a pattern matching
what is known in C++ jargon as “copy constructors”:

copy_ctor := constructor[T], T.members[ This ]; (4.10)

This example also shows how a predicate can be applied to a subject which is not the default, by
using aJAVA -like dot notation.

The copy_ctor predicate works like this: first, the patternconstructor[T] requires
that the matched item, i.e.,This , is a constructor, which accepts a single parameter of some
typeT. Next,T.members[ This ] requires thatThis —the matched constructor—is a member
of its argument typeT, or in other words, that the constructor’s accepted type is the very type that
defines it.

Literals, just as variables, can be used as actual parameters. For example,

class implements [M]

matches any class that implements interfaceM, whereas

interface extends [/java.io.Serializable] (4.11)

matches any interface that extends theSerializable interface.
The square brackets in an invocation of a predicate with a single parameter are optional.

Thus, (4.11) could have also been written as:

interface extends /java.io.Serializable

Moreover, since there is a clear lexical distinction between parameters and predicates, even the
dot notation is not essential for changing the default receiver. Thus,

copy_ctor := constructor[T], T members This ;

is equivalent to (4.10).

Standard Predicates

JTL also has a library of standard predicates, many of which are defined as a transitive closure of
the native predicates. Table 4.1 shows a sample of these.

1 inherits[M] := members[M] !defines[M];
2 container[C] := C.members[ This ];
3 precursor[M] := M.overriding[ This ];
4 implementing[M] := ! abstract , overriding[M], M. abstract ;
5 abstracting[M] := abstract , overriding[M], !M. abstract ;
6 extends+[C] := extends [C] | extends [C’], C’.extends+[C];
7 extends*[C] := C is This | extends+[C];
8 interfaceof[C] := C. class & implements [ This ];
9 interfaceof+[C] := C.implements+[ This ];

10 interfaceof*[C] := C.implements*[ This ];

Table 4.1: Some of the standard predicates of JTL, and their definitions

The figure makes apparent the JTL naming convention by which the reflexive transitive closure
of a predicatep is namedp* , while the anti-reflexive variant is namedp+. The myriad of recursive
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definitions such as these saves much of the user’s work; in particular it is rare that the programmer
is required to employ recursion.

It is interesting to examine the “recursive” definition of one of these predicates, e.g., the def-
inition of extends+ (line 6). It may appear at first that with the absence of a halting condition,
the recursion will never terminate. A moment’s thought reveals that this is not the case. Since JTL
uses a bottom-up construction of facts, starting at a fixed database, the semantics of this recursive
definition is not of stack-based recursive calls, but rather a dynamic programming, or work-list,
approach for generating facts.

The definition ofinstanceof (line 8) uses thesubject-chaining operator, “&”. The pred-
icate that appears after this operator is applied to the same subject as the predicate that appears
before it; thus, the definition is equivalent to

interfaceof[C] := C. class C. implements [ This ];

We find the version using subject-chaining to be more readable.

Predicate Name Aliases

The nameextends+ suggests that it is used as a verb connecting two nouns. As mentioned
above, we can even write

C extends+ C’

But, the same predicate can be used in situations in which, given a classC, we want to generate
the set ofall classes that it extends. A more appropriate name for these situations isancestors .
(An example for the use of the alternative nameancestors appears in predicate (4.13) below.)
It is possible to make another definition

ancestors[C] := extends+[C];

However, to promote meaningful predicate names, JTL offers what is known aspredicate name
aliases, by which the same predicate definition can introduce more than one name to the predicate.
Aliases are written as adefinition annotationwhich follows the main rule. The definition of
extends+ , for example, has such an alias:

extends+[C] := extends C | extends C’, C’.extends+[C];
Alias ancestors;

Native predicates can also have aliases, which are specified along with their declaration.

4.1.5 Set Queries

As mentioned previously, JTL’s expressive power is that of FOPL* . Although it is possible to ex-
press universal and existential quantification with the constructs of logic programming, we found
that the alternative presented in this section is more natural for the particular application domain.

Consider for example the task of checking whether aJAVA class has anint field. A straight-
forward, declarative way of doing that is to examine the set of all of the class fields, and then check
whether this set has a field whose type isint .

The following pattern does precisely this, by employing aquerymechanism:

has_int_field := class members: {
exists int field;

};
(4.12)
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Here, the querymembers: { Q1; · · · ;Qn } generates first the set of all possible membersM,
such that#.members[M] holds. The “members: ” portion of the query is called thegenerator.

This set is then passed toQ1 throughQn, thequantifiersembedded in the curly brackets. The
entire query holds if all of these quantifiers hold for this set.

In (4.12), there was only one quantifier: the JTL statementexists int field is an ex-
istential quantifier which holds whenever the given set has an element which matches the pattern
int field .

The next example shows two other kinds of quantifiers.

class ancestors: {
all public ;
no abstract ;

};

(4.13)

The evaluation of this pattern starts by computing the generator. In this case, the generator gen-
erates the set of all classes that the receiverextends directly or indirectly, i.e., all typesC for
which #.ancestors[C] holds. (Recall thatancestors is an alias forextends+ , defined
above.) The first quantifier checks whether all members of this set arepublic . The second
quantifier succeeds only if this set contains noabstract classes. Thus, (4.13) matches classes
whose superclasses are all public and concrete.

In addition toexists , all , andno , quantifiers in JTL includemany p, which holds if the
queried set has two or more elements for which patternp holds, andone p, which holds if this set
has precisely one such element.

The existential quantifier is the most common; hence theexists keyword is optional. Also,
a missing generator (in predicates whose subject is aTYPE) defaults to themembers: generator.
Hence, a concise rewrite of (4.12) is

has_int_field := class {
int field;

};
(4.14)

The members generator produces all the fields, methods, constructors as well as the static
initializer that arerecognizedwithin the body of a class, regardless of their visibility level. This
includes members which either override or hide inherited members, as well as members which
were inherited from any of its superclasses, but not overridden or hidden.

Other standard predicates which are useful as generators over class members include
defines —all members that the class defined, either in the first time, or in overriding inher-
ited members;protocol —all non-private members of a class, including inherited ones, that
were not overridden (or hidden) due to inheritance;holds —all members (includingprivate ,
inherited, overridden, and hidden members) that a class has; andoffers —similar toholds , but
excludes the members that were declared injava.lang.Object . Table 4.2 summarizes the
differences between these five predicates. Of these, onlyholds is a primitive predicate; the oth-
ers are part of the standard library, defined in terms of simpler predicates. For example,defines
can be defined thus:

defines[M] := holds[M], ![extends*[T], T.holds[M]];

In all the examples shown here, the generator was a predicate with a single named parameter
and an implicit receiver. In such cases, the generator generates a set of primitive values, which
are the possible assignments to the argument. However, in general, the generator generates a
relation of named tuples, and the quantifiers are applied to the set of these tuples. We discuss the
underlying semantics of queries in greater detail in Section 4.2.
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Generating Newly-defined Inherited Private Overridden & Members from
predicate members members members hidden members Object
membersa X X X X
defines X X Only for Object itself

protocol X X X
holds X X X X X
offers X X X X

a Default generator.

Table 4.2: Predicates commonly used as generators for queries about class mem-
bers

4.1.6 List Queries

List queries are very similar to set queries. They are specified using regular parenthesis, “( ”
and “) ”, rather than curly braces. Inside these parenthesis appear quantifiers (exists , all ,
etc.), just as in set queries. The difference in evaluation is that with list queries, JTL searches for a
disjoint partitioning of the list into sublists, such that these sublists satisfy, as sets, the quantifiers,
in order. Therefore, list queries are meaningful only for generators that provide an ordered list (an
element of typeMEMBERS, TYPES, etc.) rather than an unordered set.

One such generator is the primitive binary predicateargs . Its semantics are such that
M.args[Ts] holds ifMis a method (and therefore of kindMEMBER) andTs , of kind TYPES, is
the list or argument types of that member. Elements ofTs can then be elicited using two binary
primitive predicates:head_is and tail_is , which are the JTL equivalent of the standard,
L ISP-old, system of representing lists. Together with the unary predicatenull , testing for empti-
ness, one may useargs to write arbitrary recursive predicates for any desired iterative processing
of the list of arguments of a method. Using list queries, however, provides a simpler alternative.

A list quantification pattern, such as

args: ( many abstract , int , exists final , one public )

is evaluated in two steps: (a) list generation; and (b) application of the quantified conditions to the
list—this is achieved by searching for a disjoint partitioning of the list into sublists that satisfy the
quantifiers. In the above example, the list generation is carried out by searching for a variableTs
such that#.args[Ts] holds, and then applying the four quantifiers to it. The predicate holds
if there are sublistsT1, T2, T3, andT4, such thatTs is the concatenation of the four, and it holds
that:

• There is more than oneabstract type inT1,

• SublistT2 has precisely one element, which matchesint ,

• There is at least onefinal type inT3, and

• There is exactly onepublic type inT4.

With list queries, there is no default quantifier; instead, a predicate expecting a list parameter
is considered a quantifier, and a predicate expecting alist elementparameter is the quantifier
requiring that the respective sublist has exactly one element matching this pattern.

The default generator for list queries isargs: (compared withmembers: for set queries).
Now, the argument list pattern() is shorthand forargs:( empty ) , while (*) is shorthand
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for args:( all true ) . Similarly, the argument list pattern(_,String,*) from (4.7) is
shorthand forargs:( one true ,String, all true ) .

JTL’s current specification does not support all of the extensions presented inJAVA 5. In par-
ticular, generic type parameters are currently not handled. However, processing of such arguments
will probably be through a list enclosed in angular brackets.

4.1.7 Pedestrian Queries of Imperative Code

The executional aspect ofJAVA code remained beyond the basic functionality of JTL. This aspect
is primarily method bodies, but also other imperative code, including constructors, field initializers
and static initializers.

Core JTL includes predicates for what we termpedestriancode queries, that make it possible
to explore the fields and methods that executional code uses. A JTL extension which introduces a
new type,SCRATCH, and enables rich data-flow analysis in JTL queries was developed by Gil and
Maman [67]. (That work also explains how JTL can be extended to support abstract syntax tree
(AST) queries, and why we chose not to create such an extension.) The remainder of this section
focuses on pedestrian code queries, which prove useful in many AOP-related scenarios as well as
in other cases.

In studying a given class, it is useful to know which methods use which fields. The JTL
pattern in Figure 4.1, for example, implements one of Eclipse’s [89] warning situations, in which
aprivate field is defined but never used.

1 unused_private_member := private field,
2 This is F,
3 declared_in C, C inners*: {
4 all !access[F];
5 }

Figure 4.1: Detecting unusedprivate fields using JTL

The pattern fetches the classC that defines the field (line 3), and then uses the reflexive and
transitive closure of theinner relation to examineC, its inner classes, their inner classes, etc., to
make sure that none of these reads or writes to this field. (The unificationThis is F, in line 2,
is for making the receiver field accessible inside the curly brackets.)

The patternaccess showing in line 4 of the Figure is defined in the JTL library. The def-
inition, along with some of the other standard patterns that can be used in JTL for pedestrian
code queries is shown in Table 4.3. Such queries model the method body as an unordered set of
byte-code instructions, checking whether this set has certain instructions in it.

1 access[F] := read F | write F; Alias accesses;
2 read[F] := offers M, M read F; Alias reads;
3 write[F] := offers M, M read F; Alias writes;
4 calls[M] := invokes_interface[M] |

invokes_virtual[M] |
invokes_static[M] |
invokes_special[M];
Alias invokes, invoke;

5 use[X] := access[M] | invoke[M]; Alias uses;

Table 4.3: Standard JTL predicates for pedestrian code queries
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In the figure we see that the definition ofaccess is based on the overloaded predicatesread
andwrite . The native predicateread[F] holds if the receiver is a method whose code reads
the fieldF, whereaswrite[F] holds if the receiver is a method whose code writes to that field.
The second line of the table overloads the native definition ofread , so that it applies also to
receivers whose kind isTYPE. The third line overloadswrite in a similar manner. It follows
that the definition ofaccess in the table is overloaded, and it applies to classes and methods.

The table also makes uses of the four other pedestrian natives for inspecting code:invokes_ -
interface , invokes_ virtual , invokes_ static , and invokes_ special . (These
natives also have aliases identical to the bytecode mnemonics.)

With this minimal set of six natives and five standard predicates, several interesting patterns
can be defined. For example, predicate

creates[T] := invokes_static[M], M.ctor & declared_in[T];

is true when the receiver creates an object of typeT. Also, the following predicates test whether a
methodrefinesits precursor:

refines[M] := overrides[M], invokes_special[M];
refiner := refines[_];

And the following predicate checks whether a method is not empty:

does_something := ! void | invokes[_] | writes[_] | native ;

(If a method does not return a value, does not invoke any other method, nor write to a field, then it
must have no meaningful effect.)

With the above, we implemented an interesting PMD [197] rule, signalling an unnecessary
constructor, i.e., the case that there is only one constructor, it is public, has an empty body, and it
takes no arguments:

unnecessary_constructor := class {
constructor => public () !does_something;

}
(4.15)

4.2 Underlying Semantics

As stated above, JTL belongs to the logic programming paradigm. This section explains how the
JTL constructs are mapped to familiar notions of the paradigm.

In a nutshell, JTL is asimply typedformalism whose underlying semantics isfirst order pred-
icate logicaugmented withtransitive closure(FOPL* ). Evaluation in JTL is similar to that of
PROLOG (more precisely,DATALOG), with its built-in support for the “join” and “project” opera-
tions of relational databases. This section elaborates the language semantics a bit further.

Kinds and Predicates

The type system of JTL consists of a fixed finite set of primitive kinds (types)T . There are no
compound kinds.

A predicateis a boolean function ofT1 × · · · × Tn, n > 0, whereTi ∈ T for i = 1, . . . , n. A
predicate can also be thought of as arelation, i.e., asubsetof the cartesian product

T1 × · · · × Tn,

called thedomainof the predicate. By convention, the first argument of a predicate is unnamed,
while all other arguments are named. The unnamed arguments is called thereceiveror thesubject.
It can be accessed using the keywordThis or the symbol#.
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Native Predicates

JTL has a number of native predicates, such asclass —a unary predicate ofTYPE,
i.e., class ⊆TYPE, synchronized ⊆MEMBER(the predicate which holds only for synchro-
nized methods),members⊆TYPE×MEMBER, extends ⊆TYPE×TYPE (with the obvious se-
mantics), and the0-ary predicatesfalse (an empty 0-ary relation) andtrue (a 0-ary relation
consisting of a single empty tuple). Built-in predicates are called in certain communitiesExten-
sional Database(EDB) predicates.

A run of the JTL processor starts by loading a declaration of arity and argument types of all
native predicates from a configuration file. Native declarations are nothing more than definitions
without body. For example, the following commands in a configuration file

MEMBER. int ;

states thatint is a unary predicate such thatint ⊆MEMBER.

Compound Predicates

Conjunction, disjunction and negation can be used to definecompoundpredicates from the built-
ins. Also permitted arequantification, as explained in Section 4.1, andtransitive closure, i.e.,
recursion—as in:

extends+[X] := extends X | extends [Y], Y.extends+[X];

The language offers an extensive library ofpre-defined, or standardcompound predicates. Com-
pound predicates are sometimes calledIntensional Database(IDB) predicates.

Finite Databases

To run, a JTL program requires a database whichconformsto the natives, i.e., it must have in its
schema the relations or the EDBs as dictated by the set of natives defined by the JTL implementa-
tion at hand.

The simplest way to supply a database is by specifying to the JTL processor a finite set of
classes and methods, e.g., a.jar file. Obviously, such a collection does not directly represent
any EDBs. EDBs are realized on top of the collection by means of a bytecode analysis library.

Alternatively, a finite database can also be provided by supplying a finite set of legalJAVA

source files. The native relations are then realized on top of these by aJAVA parser.
JTL predicates can also be run without a fixed input set. Such a situation, can be thought of as

a DATALOG query over an infinite database.

Evaluation Order

Unlike PROLOG, the order of evaluation in JTL is unimportant. The output set of a pattern is the
same regardless of the order by which its constituent predicates in it are invoked. Predicates have
no side-effects, and all computations (on finite databases) terminate.

The simplest way to compute the output set is bottom-up, i.e., by using a work-list algorithm
which uses the program rules to compute all tuples in all IDBs used by the program goal. This
process, although guaranteed to terminate, can be very inefficient, both time- and space-wise. JTL
instead analyzes predicates and applies, whenever possible, a more efficient top-down evaluation
strategy
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Overloading and Kind Inference

The JTL processor includes akind inference enginewhich, based on the kind of arguments and
arity of the native predicates, infers arity and arguments kinds of predicates defined on top of these.
For example, the definition

real := double | float ; (4.16)

implies thatreal ⊆MEMBER.
JAVA ’s overloading of keywords carries through to JTL, e.g., since theJAVA keywordfinal

can be applied to classes and members, the built-in predicatefinal in JTL is overloaded, de-
noting two distinct relations:final 1 ⊆TYPEandfinal 2 ⊆MEMBER. Many native predicates
are similarly overloaded; JTL infers overloading of compound predicates. For example, the con-
junction of final andpublic is overloaded; the conjunction offinal and interface is
not.

The Default Receiver

As seen in the last examples, JTL sports an implicit mechanism of applying a predicate to receiver.
For example, the definition ofreal in (4.16) could have been written as

real := #. double | #. float ; (4.17)

Named Arguments

The signatureof a relation is an ordered pair〈R,A〉, whose first component,R ∈ T , defines
the type of the receiver, while the second component,A = {〈`1, A1〉, . . . 〈`m, Am〉}, defines the
names of the arguments (the labels`j , j = 1, . . . ,m, must be distinct) and their types (Aj ∈ T
for j = 1, . . . , m).

A row of a relation is in general anamed tuple, i.e., a tuple of values, where all but the first
carry labels, such that the types of these values and the labels they carry match exactly the signature
of the predicate.

Predicates are characterized by signature, e.g., the signature of predicatemembers is〈
TYPE, {〈“M” , MEMBER〉} 〉

, while the definition

container[C] := C.members[#]

implies

〈
MEMBER, {〈“C” , TYPE〉} 〉

as the signature ofcontainer . Overloaded predicates have multiple signatures, one for
each meaning. For example, the built-in predicatefinal has two signatures,

〈
MEMBER, ∅〉

and
〈
TYPE, ∅〉.

Set and List Queries

JTL extends logic programming with what we call aquery, which is a predicate whose evaluation
involves the generation of a temporary relation, and then applying variousquantifiersto this rela-
tion. A set query predicate is true if all the quantifies hold for the generated temporary relation;
a list query predicate is true if the list can be decomposed into a series of sublists so that each
quantifier holds for the corresponding sublist, in order.
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1 classical := class members: {
2 has field;
3 many method;
4 no static ;
5 method => public ;
6 field => private ;
7 disjoint setter, getter;
8 }

Figure 4.2: A JTL predicate for matching “classical class” notion.

The predicate defined in Figure 4.2 tries to check that a class is “classical,” i.e., that it has at
least one field, two or more methods, that all methods are public, all fields are private, that there are
no static fields or methods, and that the sets of “setters” and “getters” of this class are disjoint. (The
definition in the figure assumes that predicatessetter andgetter were previously defined.)

The essence of the example is thegeneratorof the temporary relation, written asmembers: .
The colon character (: ) appended to predicatemembers makes it into a generator. JTL generates
the set of all membersM, such that#.members[M] holds. This set, which can be also thought
of as a relation with only one unnamed column, is subjected to the set expressions inside the curly
brackets.

Six conditions are applied to this set: the first (line 2) is an existential quantifier (has is
synonymous toexists ) requiring that at least one element in the generated set satisfies the
field condition, i.e., that the class has at least one field. The second condition (line 3) similarly
requires thatmethod holds for two more members. The 3rd condition (line 4), as should be
obvious, requires that this set does not contain any static members.

The conditions in lines 5–6 areset expressions. The first requires that the predicate
method ⇒ public (read: “method implies public”) holds in this set, i.e., that all method mem-
bers are public. The next condition similarly states that the set offield members is a subset
of the set ofprivate members. Finally, the set expressiondisjoint setter, getter
requires that the two subsets obtained by applying predicatessetter andgetter to the set of
class members are disjoint.

4.2.1 Translating JTL into Datalog

As stated earlier, JTL provides high-level abstraction on top of aDATALOG core. We will now
briefly illustrate how JTL source code can be translated intoDATALOG.

The first translation step is that of the subject variable: the subject variable in JTL (either
implicit or explicit) is translated into a standardDATALOG variable which prepends all other actual
arguments. For example, the JTL expression

p1 := abstract , extends X, X abstract ;

is equivalent to thisDATALOG expression:

p1(This) :- abstract(This), extends(This,X), abstract(X).

(In a sense, this is reminiscent of how early C++ compilers worked by translating the code to
standardC [149], and prepended the hidden variablethis to class methods when represented as
simple functions.)
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Disjunctive expression are not as simple sinceDATALOG requires the introduction of a new
rule for each branch of a disjunctive expression. Thus,

p2 := public [ interface | class ];

is translated into:

p2(This) :- public(This), aux(This).
aux(This) :- interface(This).
aux(This) :- class(This).

The following predicate poses a greater challenge:

p3[T] := public extends T [T abstract | interface ];

Here, the parameterT appears in theextends invocation and also on the left-hand side of the
disjunction, but not on the right-hand side. The translation intoDATALOG requires the use of a
special EDB predicate,always(X) , which holds for every possibleX value:

p3(This) :- public(This), extends(This,T), aux(This,T).
aux(This,T) :- interface(This), always(T).
aux(This,T) :- abstract(T), always(This).

The translation of quantifiers relies on the natural semantics ofDATALOG, where every predi-
cate invocation induces an implicit existential quantifier. For example,

p4 := class members: { abstract ; };

Is equivalent to thisDATALOG definition:

p4(This) :- class(This), members(This,M), abstract(M).

By using negation, we can express the universal quantifier in terms of the existential one, the
negative quantifier in terms of the universal one, etc.

The examples presented here highlight the fundamentals of the JTL toDATALOG mapping.
The program-transformation extension requires certain changes to the translation algorithm, as
discussed in Section 4.6.

4.3 Using JTL in Aspect-Oriented Systems

We now examine how JTL can be used to serve the two main purposes for which it was created, as
presented in the preamble of the current chapter (page 63):join-point selection for aspect-oriented
programmingandexpressing the conditions making up concepts. Both uses can be of great benefit
not only to languages that integrate shakein semantics, but to other aspect-oriented solutions as
well.

4.3.1 Specifying Pointcuts Using JTL

The limited expressive power of the pointcut specification language ofASPECTJ(and other related
AOP languages, e.g.,CAESAR [171] andASPECTJ2EE), has been noted several times in the
literature [91,126,128,187].

80



We propose that JTL is integrated into AOP processors, taking charge of pointcut specification.
To see the benefits of using a JTL component for this purpose, consider the followingASPECTJ
pointcut specification:

call ( public void *.set*(*));

JTL’s full regular expressions syntax can be used instead, by first defining

setter := public void ’set[A-Z]?*’(_); (4.18)

and then writingcall (setter) .
This simple example exhibits two distinct advantages. First, JTL (unlikeASPECTJ) uses

proper regular expressions; thus, while theASPECTJ variant (mistakenly) matches a method
called, e.g., “settle ”, the JTL variant does not match it (since it expects an uppercase letter
after the prefix “set ”). Second, the pattern isnamed, making itreusablewhile also making the
pointcut specification more expressive. Still, if brevity is desired, anonymous patterns can also be
used directly in pointcut specifications.

To understand the benefit of named patterns, consider a case where the same set of program
elements needs to be referred to more than once. Assume we wish to tap both read and write
operations to all primitive-typed public fields. InASPECTJ, this is a verbose pointcut, as shown
in Figure 4.3. Not only tedious, it is also error prone, since a major part of the code is replicated
across all definitions.

get ( public boolean *) || set ( public boolean *) ||
get ( public byte *) || set ( public byte *) ||
get ( public char *) || set ( public char *) ||
get ( public double *) || set ( public double *) ||
get ( public float *) || set ( public float *) ||
get ( public int *) || set ( public int *) ||
get ( public long *) || set ( public long *) ||
get ( public short *) || set ( public short *);

Figure 4.3: An ASPECTJ pointcut definition for all read- and write-access opera-
tions of primitive public fields.

By using disjunction in JTL expressions, theASPECTJ code from Figure 4.3 can be greatly
simplified if we allow pointcuts to include JTL expressions:

primitive := boolean | byte | char | double |
float | int | long | short ;

ppf := public primitive field;

get (ppf) || set (ppf); //JTL−based AspectJ pointcut

(In truth, primitive is a standard library predicate.) The ability to name predicates, such as
ppf in the example, makes it possible to turn the actual pointcut definition into a concise, readable
statement.

But there is more to using JTL than conciseness. Figure 4.4 is an example of a condi-
tion that is impossible to specify inASPECTJ. Conditionfield_in_plain_class holds for
public fields in a class which has no getters or setters. This requirement is realized by predicate
container , which captures inC the container class. A query is then used to examine the other
members of the class.
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setter := public void ’set[A-Z]?*’(_);
boolean_getter = boolean ’ is [A-Z]?*’();
other_getter = ! boolean ! void ’get[A-Z]?*’();
getter := public [boolean_getter | other_getter];

field_in_plain_class := public field,
declared_in[C], C.members: {

no getter;
no setter;

};

Figure 4.4: A JTL pointcut that cannot be expressed inASPECTJ

The example from Figure 4.4 could have been implemented in other suggested alternatives to
theASPECTJ pointcut specification language, but not without a loop or a recursive call.

Figure 4.4 belongs to a set of pointcut definitions that present requirements not only about the
join points themselves, but also on related classes—here, the class in which the matched method
or field is defined, but possibly on other classes (such as parameter types) as well. To understand
the importance of this ability, consider the following example. Assume we wish to apply an aspect
to all classes that extend classResource . This aspect specifically advises the class constructors,
making them work by managing an instance pool. InASPECTJ, this advice will use a pointcut
such as:

execution (Resource+.new(..))

However, let us further assume that we can only pool resources that implement the
Serializable interface. This is a very simple condition on the class containing the matched
constructors, and in fact it can still be expressed usingASPECTJ:

execution (Resource+.new(..)) && execution (Serializable+.new(..))

i.e., we match constructors that are both in a subclass ofResource and in an implementing class
of Serializable . The JTL-based alternative is perhaps easier to understand:

ctorInSerializableResource := constructor in C,
C extends* Resource & implements* Serializable;

execution (ctorInSerializableResource) //Pointcut in AspectJ using JTL

As the requirements we present for the containing class get more complicated,ASPECTJ is unable
to express them. For example, we might require that the advice is applied only toResource sub-
classes that have no reference-type fields (say, to prevent the serialization of large object graphs).
The following JTL predicate expresses this requirement:

ctorInSerializableResource := constructor in C,
C extends* Resource & implements* Serializable & {

no !primitive field;
};

In effect, we are using JTL to express aconceptabout the join-points’ containing type. The use of
JTL to define concepts is discussed in detail in the Section 4.3.2 below.
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Our contribution puts the expressive power of JTL at the disposal ofASPECTJand other aspect
languages, replacing the sometimes ad-hoc pointcut definition language with JTL’s systematic
approach. JTL replaces only the member-selection syntax, so that each language can have its own
pointcut semantics (e.g., support for control-flow pointcuts such ascflow in ASPECTJ). And
while JTL itself only examines the static structure of the code, JTL pointcut expressions can be
used in dynamic pointcut definitions as well. A variant ofASPECTJ that embeds JTL, for example,
can use expressions such as

execution (someJTLPredicate) && ! cflowbelow (someJTLPredicate)

to filter off recursive calls. Languages that do not support dynamic pointcut expressions (like
cflowbelow ) can generate advice that use JTL’s library at runtime for any additional required
tests.

4.3.2 Concepts for Generic Programming

In the context of generic programming, aconcept[106, 124, 210] is a set of constraints which
a given set of types must fulfil in order to be used by a generic module. As a simple example,
consider the following C++ template:

template <typename T>
class ElementPrinter {
public :
void print(T element) {

element.print();
}

}

The template assumes that the provided type parameterT has a method calledprint , which
accepts no parameters. ViewingT as a single-type concept, we say that the template presents an
implicit assumption regarding the concept it accepts as a parameter. Implicit concepts, however,
present many problems, including hurdles for separate compilation, error messages that Stroustrup
et al. term “of spectacular length and obscurity” [210], and more.

With Java generics, one would have to define a new interface:

interface Printable {
void print();

}

and use it to confine the type parameter. While the concept is now explicit, this approach suffers
from two limitations: first, due to the nominal subtyping ofJAVA , generic parameters must explic-
itly implement interfacePrintable ; and second, the interface places a “baggage” constraint on
the return type ofprint , a constraint which is not required by the generic type.

Using JTL, we can express the concept explicitly and without needless complications, thus:

( class | interface ) {
print();

};

There are several advantages for doing that: First, the underlying syntax, semantics and evaluation
engine are simple and need not be re-invented. Second, the JTL syntax makes it possible to make
useful definitions currently not possible withJAVA standard generics and many of its extensions.
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The importance of concepts is not limited to the field of generic programming. It is also of
relevance to aspect-oriented programming in general, and to shakeins in particular, because, like
generic types, shakeins (and aspects) also make assumptions about the classes to which advice are
applied. By expressing the concepts in JTL, we can make these assumptions explicit.

The problem of expressing concepts is more thorny when multiple types are involved. A
recent work [106] evaluated genericity support in 6 different programming languages (including
JAVA , C# [133] andEIFFEL [141]) with respect to a large-scale, industrial-strength, generic graph
algorithm library, reaching the conclusion that the lack of proper support for multi-type concepts
resulted in awkward designs, poor maintainability, and unnecessary run-time checks.

JTL predicates can be used to express multi-type concepts, and in particular each of the con-
cepts that the authors identified in this graph library.

As an example, consider thememory_pool concept, which is part of the challenging exam-
ple the concepts treatise used by Garcia et al. A memory pool (sometimes called aninstance pool
or object pool[122]) is used when a program needs to use several objects of a certain type, but it
is required that the number of instantiated objects will be minimal. In a typical implementation,
the memory pool object will maintain a cache of unused instances. When an object is requested
from the pool, the pool will return a previously cached instance. Only if the cache is empty, a new
object is created by issuing a create request on an appropriate factory object.

More formally, the memory pool concept presented in Figure 4.5 takes three parameters:E
(the type of elements which comprise the pool),F (the factory type used for the creation of new
elements), andThis (the pool type).

name create, instance, acquire, release;

factory[E] := ( class | interface ) {
public constructor ();
public E create();

};

memory_pool[F,E] := This is T, {
public static T instance();
public E acquire();
public release(E);

}, F.factory[E];

Figure 4.5: Thememory_pool multi-type concept

The body of the concept requires thatThis will provide acquire() and release()
methods for the allocation and deallocation (respectively) ofE objects, and a staticinstance()
method to allow client code to gain access to a shared instance of the pool. Finally, it requires
(by invoking theFactory predicate) thatF provides a constructor with no arguments, and a
create() method that returns objects of typeE.

As shown by Garcia et al., the requirements presented in Figure 4.5 have no straightforward
representation inJAVA , C# or EIFFEL. In particular, using aninterface to express a concept
presents extraneous limitations, such as imposing a return type onrelease , and it cannot express
other requirements, such as the need for a zero-arguments constructor in a factory. Using an
interface also limits the applicable types to those that implement it, whereas the concept itself
places no such requirement.

In a language where JTL concept specifications are supported, a generic module parameterized
by typesX, Y and Z can declare, as part of its signature, thatX.memory_pool[Y,Z] must
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hold. This will ensure, at compile-time, thatX is a memory pool ofZ elements, using a factory of
typeY. Thus, concepts may be regarded as the generic-programming equivalence of theDesign
by Contract[169] philosophy.

Concepts are not limited to templates and generic types. Mixins, too, sometimes have to
present requirements to their type parameter. The famousUndo mixin example [8] requires a class
that defines two methods,setText andgetText , but does not define anundo method. The last
requirement is particularly important, since it is used to preventaccidental overloading. However,
it cannot be expressed usingJAVA interfaces. The following JTL predicate clearly expresses the
required concept:

undo_applicable := class {
setText(String);
String getText();
no undo();

};

In summary, we propose that in introducing advanced support of genericity and concepts to
JAVA , one shall use the JTL syntax as the underlying language for defining concepts. In addition
to the two benefits listed above (simple semantics and evaluation, useful definitions not possible
in standardJAVA ), using JTL also puts intriguing questions of type theory in the familiar domain
of logic, since, as mentioned earlier, JTL is based on FOPL*. For example, the question of one
concept being contained in another can be thought of as logical implication. Using text book
results [36], one can better understand the tradeoff between language expressiveness and com-
putability or decidability. Work is currently underway for defining a JTL sub-language, restricting
the use of quantifiers, which assures decidability of concept containment.

4.4 Additional Applications

As JTL took shape and grew older it became clear that it can be used not only for its two original
uses, namely pointcuts and concepts, but also for other software engineering tasks, primarily as
a tool to assist programmers understand the code they must maintain. This section provides a
brief survey of some of these additional uses: integration in development environments, LINT-like
tests, and more. One additional use not covered here is the detection ofmicro-patterns[110],
which relies on a JTL extension developed by Gil and Maman for examining data-flow analysis
inside methods [67,68].

4.4.1 Integration in CASE Tools and IDEs

In their work on JQuery, Janzen and De Volder [143] make a strong case, including empirical
evidence, for the need of a good software query tool as part of the development environment. We
argue that the querying (but not the navigational) side of JQuery can be replaced and simplified by
JTL.

To prove this claim, an Eclipse [89] plug-in that runs JTL queries and presents the result in
a dedicated view was developed by Itay Maman and others. Figure 4.6 shows an example: the
program (which appears above the results) found all classes inJAVA ’s standard library for which
instances are obtained using astatic method rather than a constructor.

Using JTL, many searches can be described intuitively. For example, to find all classes that
share a certain annotation@X, the developer simply searches for@Xclass . The similarity
between JTL syntax andJAVA declarations (which we refer to as theminimal abstraction gap) will
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Figure 4.6: Screenshot of the result view of JTL’s Eclipse plugin

allow even developers who are new to JTL to easily and effectively sift through the overwhelming
number of classes and class members in the variousJAVA libraries.

JTL can also be used to replace the hard-coded filtering mechanism found in many IDEs (e.g.,
a button for showing onlypublic members of a class) with a free-form filter. Figure 4.7 is a
mock screenshot that shows how JTL can be used for filtering in Eclipse.

Figure 4.7: Using JTL for filtering class members (mock screenshot)

Finally, using the program transformation extension described in Section 4.6 below, JTL can
be used for search-and-replace operations. Since the operation is context-sensitive, there is no risk
of, e.g., changing text that appears in comments.
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4.4.2 LINT-Like Tests

JTL can be used to express, and hence detect, many undesired programming constructs and habits.
On the one hand, JTL’s limitation with regard to the inspection of method bodies implies that it
cannot detect everything that existing tools [99, 137, 198] can. In its current state, JTL cannot
detect problematic constructs such as

if (C) return true else return false ;

nor can it easily express numeric limitations (e.g., detecting classes with more thank methods for
some constantk).

Yet on the other hand, JTL’s expressiveness makes it easy for developers and project managers
to improvise and quickly define new rules that are both enforceable and highly self-documenting.
We have already seen a few examples for such tests: pattern (4.15) can be used to detect needlessly-
defined constructors in classes; the pattern in Figure 4.1 detects unusedprivate class members.

To further test this prospect, we wrote a collection of JTL patterns that implement the entire set
of warnings issued by Eclipse and PMD [197] (a popular open-source LINT tool forJAVA ). The
only exceptions were those warnings that directly rely on the program source code (e.g., unused
import statements), as these violations are not represented in the binary class file that we used.

For example, consider the PMD ruleLOOSECOUPLING. It detects cases where the concrete
collection types (e.g.,ArrayList or Vector ) are used instead of the abstract interfaces (such
asList ) for declaring fields, method parameters, or method return values—in violation of the
library designers’ recommendations. This rule is expressed as a 45-linesJAVA class, and includes
a hard-coded (yet partial) list of the implementation classes. PMD does make a heroic effort, but
it will mistakenly report (e.g.) fields of typeVector for some alien classVector which is not
a collection, and was declared outside of thejava.util package.

The JTL equivalent is:

loose_coupling := ( class | interface ) {
T method | T field | method(*, T, *);

}, T implements /java.util.Collection;

It is shorter, more precise, will detect improper uses of any class that implements any standard
collection interface (without relying on an explicit list), and will not flag false positives.

4.4.3 Additional Applications

Several other potential uses for JTL include encapsulation policies and confined types, among
others.Encapsulation policieswere suggested by Scharli et al. [200] as a software construct for
defining which services are available to which program modules. Using JTL, both the selection of
services (methods) and the selection of modules (classes) can be more easily expressed.

Confined types[32] are another example in which JTL could be used, provided of course that
confinement is represented in a form of annotation. We have not yet investigated the question of
checking the imperative restrictions of confined types with JTL.

4.5 Related Work on Language Queries

Tools and research artifacts which rely on the analysis of program source code are abundant
in the software world, including metrics [60] tools, reverse-engineering [20], smart CASE en-
hancements [135], configuration management [26], architecture discovery [116], requirement trac-
ing [118], aspect-oriented programming [151], software porting and migration [157], program
annotation [4], and many more.
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The very task of code analysis per se is often peripheral to such products. It is therefore no
wonder that many of these gravitate toward the classical and well-established techniques of formal
language theory, parsing and compilation [2]. In particular, software is recurringly represented in
these tools in an abstract syntax tree (AST).

JTL is different in that it relies of a flat relational model, which, as demonstrated in Sec-
tion 4.5.2, can also represent an AST. (Curiously, there were recently two works [115, 164] in
which relational queries were used in OO software engineering; however, these pertained to pro-
gram execution trace, rather than to its static structure.)

JTL aspires to be a universal tool for tool writers, with applications such as specification
of pointcuts in AOP, the expression of type constraints for generic type parameters and mixin
parameters, selection of program elements for refactoring, patterns discovery, and more.

The community has already identified the need for a general-purpose tool or language for
processing software. The literature describes a number of such products, ranging from dedicated
languages embedded into larger systems to attempts to harness existing languages (such asSQL or
XQUERY [30]) to this purpose. Yet, despite the vast amount of research invested in this area, no
single industry standard has emerged.

A well-known example isREFINE [194], part of theSoftware Refinery Toolsetby Reasoning
Systems. With versions forC, FORTRAN , COBOL and ADA [217], Software Refinery gener-
ated an AST from source code and stored them in a database for later searches. The AST was
then queried and transformed using theREFINE language, which included syntax-directed pattern
matching and compiled intoCOMMON L ISP, with pre- and post-conditions for code transforma-
tions. This meta-development tool was used to generate development tools such as compilers,
IDEs, tools for detecting violations of coding standards, and more.

Earlier efforts includeGandalf [127], which generated a development environment based on
language specifications provided by the developers. The generated systems were extended using
the ARL language, which was tree-oriented for easing AST manipulations. Other systems that
generated database information from programs and allowed user-developed tools to query this
data included theC Information Abstractor[54], where queries were expressed in theINFOV IEW

language, and its younger siblingC++ Information Abstractor[123], which used theDATA SHARE

language.
A common theme of all of these, and numerous others (including systems such as

GENOA[84], TAWK [125], Ponder[16], ASTLog[73], SCRUPLE[189] and more) is the AST-
centered approach. In fact, AST-based tools became so abundant in this field that a recent such
product was entitledYAAB, for “Yet Another AST Browser” [10]. Another category of products
is contains those which rely on a relational model. For example, theRigi [177] reverse engineer-
ing tool, which translates a program into a stream of triplets, where each triplet associates two
program entities with some relation.

Section 4.5.1 compares JTL syntax with other similar products. Section 4.5.2 then says a
few words on the comparison of relational- rather than an AST- model, for the task of queering
object-oriented languages.

4.5.1 Using Existing Query Languages

Reading a poem in translation is like kissing
your lover through a handkerchief.

— H. N. Bialik

Many tools use existing languages for making queries. YAAB, for example, uses the Object
Constraint Language,OCL, by Rational Software, to express queries on the AST; theSoftware
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Life Cycle Support Environment(SLCSE) [208] is an environment-generating tool where queries
are written inSQL; Rigi’s triples representation is intended to be further translated into a relational
format, which can be queried with languages such asSQL andPROLOG; etc.

BDDBDDB [229] is similar to JTL in that it usesDATALOG for analyzing software. It is
different from JTL in that it concentrates on the specific objective of code optimization, e.g.,
escape analysis, and does not further abstract the underlying language.

A more modern system is XIRC [92], where program meta-data is stored in an XML format,
and queries are expressed inXQUERY. The JAVA standard reflection package (as well as other
bytecode analyzers, such as BCEL) generateJAVA data structures which can be manipulated di-
rectly by the language. JQuery [143] is aPROLOG-based extension of Eclipse that allows the
user to make queries about code. Finally,ALPHA [187] promotes the use ofPROLOG queries for
expressing pointcuts in aspect-oriented programming.

We next compare queries made with some of these languages with the JTL equivalent. Fig-
ure 4.8(a) depicts an example (due to the designers of XIRC) of usingXQUERY to find Enterprise
JavaBeans (EJBs) which implementfinalize() , in violation of the EJB specification.

subtypes(/class[@name= "javax.ejb.EnterpriseBean" ])
/method[

@name ="finalize"
and .//returns/@type = "void"
and not(.//parameter)

]

(a) XIRC implementation of the query (from [92]).

class implements /javax.ejb.EnterpriseBean {
void finalize();

};

(b) The equivalent query in JTL.

Figure 4.8: Searching for EJBs that implementfinalize with XIRC (a) and
with JTL (b)

In inspecting the figure, we find that in order to use this language the programmer must be
intimately familiar not only with theXQUERY language, but also with the details of the XIRC
encoding, e.g., the names of attributes where entity names, return type, and parameters are stored.
A tool developer may be expected to do this, probably after climbing a steep learning curve, but its
seems infeasible to demand that an IDE user will interactively type a query of this sort to search
for similar bugs.

The JTL equivalent (Figure 4.8(b)) is a bit shorter, and perhaps less foreign to theJAVA pro-
grammer.

Figure 4.8 demonstrates what we callthe abstraction gap, which occurs when the syntax of the
queries is foreign to the queried items. Word-processing and other office automation applications
present no (or minimal) abstraction gap. For example, the search string which a user enters in the
a typical text editor’s search box is usually identical to the strings which it matches. The database
users community is accustomed to Query-be-Example. Our quest is in fact a request to bring this
ideal to the world of language processing tools.

we see that the JTL code is not only shorter to type and is probably easier to learn, but it is
alsoobvious to any JAVA programmer, exhibiting a minimal abstraction gap.
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We next compare JTL syntax with that of JQuery [143], which also relies on logic program-
ming for making source code queries. Table 4.4 compares the queries used in the JQuery case
study (extraction of the user interface of a chess program) with their JTL counterparts. The table

Task JQuery JTL
Finding class “BoardManager” class(?C,name,BoardManager) class BoardManager

Finding all “main” methods
method(?M,name,main)
method(?M,modifier,[public,static]) public static main(*)

Finding all methods taking a pa-
rameter whose type contains the
string “image ”

method(?M,paramType,?PT)
method(?PT,/image/) method(*,/?*image?*/,*)

Table 4.4: Rewriting JQuery examples [143] in JTL

shows that JTL queries are a bit shorter and resemble the code better.
The JTL pattern in the last row in is explained by the following: To find a method in which

one of the type of parameters contains a certain word, we do a pattern match on its argument list,
allowing any number of arguments before and after the argument we seek. The desired argument
type itself is a regular expression (replacing, as in all JTL regular expressions, the dot with the
question mark as the “any character” signifier).

TheASPECTJ sub-language for pointcut definition, just as the sub-language used in JAM [8]
for setting the requirements for the base class of a mixin, exhibit minimal abstraction gap. The
challenge that JTL tries to meet is to do achieve this objective with a more general language.

Figure 4.9 is an example of usingJAVA ’s reflection API to implement a query—here, finding
all public final methods (in a given class) that return anint .

public List<Method> findPublicFinalInt(Class c) {
List<Method> result = new Vector<Method>();
for (Method m : c.getMethods()) {

int mod = m.getModifiers();
if (m.getReturnType() == Integer.Type

&& Modifiers.isPublic(mod)
&& Modifiers.isFinal(mod))

result.add(m);
}
return result;

}

Figure 4.9: Locating public final int methods using theJAVA reflection
API

Comparing the use of the reflaction API with the XIRC approach, we can observe several
things:

• Figure 4.9 usesJAVA ’s familiar syntax, but this comes at the cost of replacing the declarative
syntax of XIRC with explicit control flow.

• Despite the use of plainJAVA , Figure 4.9 manifests an abstraction gap, by which the pattern
of matching an entity is very different from the entity itself.

• The code still assumes familiarity with an API.

• As with XIRC, it is unreasonable to expect an interactive user to type in such code.
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Again, the JTL equivalent,public final int (*) , is concise, avoids complicated con-
trol flow, and minimizes the abstraction gap.

We should also note that thefragility of a query language is in direct proportion to the extent by
which it exposes the structure of the underlying representation. Changes to the queried language
(i.e.,JAVA in our examples), or deepening the information extracted from it, might dictate a change
to the representation, and consequently to existing client code. By relying on manyJAVA keywords
as part of its syntax, the fragility of JTL is minimal.

There are, however, certain limits to the similarity, the most striking one being the fact that in
JTL, an absence of a keyword means that its value is unspecified, whereas inJAVA , the absence of
e.g.,static means that this attribute is off. This is expressed as! static in JTL.

Another interesting comparison with JTL is given by consideringALPHA and Gybels and
Brichau’s [126] “crosscut” language, since both these languages rely on the logic paradigm. Both
languages were designed solely for making pointcut definitions (Gybels and Brichau’s work, just
as ours, assumes a static model, whileALPHA allows definitions based on execution history). It is
no wonder that both are more expressive in this than the referenceASPECTJ implementation.

Unfortunately, in doing so, both languagesbroadenrather than narrow the abstraction gap of
ASPECTJ. This is a result of the strict adherence to thePROLOG syntax, which is very different
than that ofJAVA . Second, both languages make heavy use of recursive calls, potentially with
“cuts”, to implement set operations. Third, both languages are fragile in the sense described
above.

We argue that even though JTL is not specific to the aspect-oriented domain, it can do a better
job at specifying pointcuts. (Admittedly, dynamic execution information is external to our scope.)
Beyond the issues just mentioned, by using the fixed-point model of computation rather than
backtracking, JTL solves some of the open issues related to the integration of the logic paradigm
with object-orientation that Gybels, Brichau, and Wuyts mention [41, Sec. 5.2]: The JTL API
supports multiple results and there is no backtracking to deal with.

4.5.2 AST vs. Relational Model

We believe that the terse expression and the small abstraction gap offered by JTL is due to three
factors: (i) the logic programming paradigm, notorious for its brevity, (ii) the effort taken in mak-
ing the logic programming syntax even more readable in JTL, and (iii) the selection of a relational
rather than a tree data model.

We now try to explain better the third factor. Examining the list of tools enumerated early in
this section we see that many of these rely on theabstract syntax treemetaphor. The reason that
ASTs are so popular is that they follow the BNF form used to define languages in which software
is written. ASTs proved useful for tasks such as compilation, translation and optimization; they
are also attractive for discovering the architecture of structured programs, which are in essence
ordered trees.

We next offer several points of comparison between an AST based representation and the
set-based, relational approach represented by JTL and other such tools. Note however that as
demonstrated by Gil and Maman [67, Sec. 3.1], and as Crew’sASTLOG language [73] clearly
shows, logic programming does not stand in contradiction with a tree representation.

• Unordered Set Support.In traditional programming paradigms, the central kind of modules
were procedures, which are sequential in nature. In contrast, inJAVA (and other object-
oriented languages) a recurring metaphor is the unorderedset, rather than thesequence: A
program has a set of packages, and there is no specific ordering in these. Similarly, a package
has a set of classes, a class is characterized by a set of attributes and has a set of members,
each member in turn has a set of attributes, a method may throw a set of exceptions, etc.
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Although sets can be supported by a tree structure, i.e., the set of nodes of a certain kind,
some programming work is required for set manipulation which is a bit morenatural and
intrinsic to relational structures.

On the other hand, the list of method arguments is sequential. Although possible with a
relational model, ordered lists are not as simple. This is why JTL augments its relational
model with built-ins for dealing with lists, as discussed in Section 4.1.6.

• Recursive Structure.One of the primary advantages of an AST is its support for the recursive
structures so typical of structured programming, as manifested e.g., in Nassi-Shneiderman
diagrams [179], or simple expression trees.

Similar recursion of program information is less common in modern languages.JAVA does
support class nesting (which are represented using theinners predicate of JTL) and meth-
ods may (but rarely do) define of nested classes. Also, a class cannot contain packages, etc.

• Representation Granularity.Even though recursively defined expressions and control state-
ments still make the bodies of methods in object-oriented programs, they are abstracted
away by our model.

JTL has native predicates for extracting the parameters of a method, its local variables, and
the external variables and methods which it may access, and as shown, even support for
dataflow analysis. In contrast, ASTs make it easier to examine the control structure. Also,
with suitable AST representation, a LINT-like tool can provide warnings that JTL cannot,
e.g., a non-traditional ordering of method modifiers.

It should be said that the importance of analyzing method bodies in object-oriented software
is not so great, particularly, since methods tend to be small [60], and in contrast with the
procedural approach, their structure does not reveal much about software architecture [116].
Also, in the object-oriented world, tools are not so concerned with the algorithmic structure,
and architecture is considered to be a graph rather than a tree [135].

• Data Model Complexity.An AST is characterized by a variety of kinds of nodes, corre-
sponding to the variety of syntactical elements that a modern programming language offers.
A considerable mental effort must be dedicated for understanding the recursive relationships
between the different nodes, e.g., which nodes might be found as children or descendants of
a given node, what are the possible parent types, etc.

The underlying complexity of the AST prevents a placement of a straightforward interface
at the disposal of the user, be it a programmatic interface (API), a text query interface, or
other. For example, in theHammurapi[25] system, the rule “Avoid hiding inherited instance
fields” is implemented by more than 30 lines ofJAVA code, including twowhile loops and
severalif clauses. The corresponding JTL pattern is so short it can be written in one line:

class { field overrides[_] }

The terse expression is achieved by the uniformity of the relational structure, and the fact
that looping constructs are implicit in JTL queries.

• Representation Flexibility.A statically typed approach (as in Jamoos [111]) can support
the reasoning required for tasks such as iteration, lookup and modification of an AST. Such
an approach yields a large and complex collection of types of tree nodes. Conversely, in a
weakly-typed approach (as inREFINE), the complexity of these issues is manifested directly
in the code.
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Either way, changes in the requirements of the analysis, when reflected in changes to the
kind of information that an AST stores, often require re-implementation of existing code,
multiplying the complex reasoning toll. This predicament is intrinsic to the AST structure,
since the search algorithm must be prepared to deal with all possible kinds of tree nodes,
with a potentially different behavior in different such nodes. Therefore, the introduction of
a new kind of node has the potential of affecting all existing code.

In contrast, a relational model is typically widened by adding new relations, without adding
to the basic set of simple types. Such changes are not likely to break, or even affect most
existing queries.

• Caching and Query Optimization.There is a huge body of solid work on query optimization
for relational structures; the research on optimizing tree queries, e.g.,XPATH queries, has
only begun in recent years. Also, in a tree structure, it is tempting to store summarizing,
cached information at internal nodes—a practice which complicates the implementation. In
comparison, the well established notion ofviewsin database theory saves the manual and
confusing work of caching.

4.6 A JTL Extension for Program Transformation

A predicate in logic programming languages such asDATALOG or PROLOG can include variables
to be used for output, their value being set as part of the standard process of evaluation. This is also
true for JTL predicates. Because JTL supports string variables (theSTRINGkind), it is possible
to harness such output-only variables for the generation of string output. To do so, all one needs
to do is introduce an additional parameter of this kind to every relevant predicate, and appropriate
terms inside the predicate to bind the value of this variable as part of the pattern-matching process.
However, the process of managing this “baggage” variable is tiresome and error prone.

This section describes a JTL language extension which automatically manages this baggage
information. Section 4.7 will give a number of detailed applications of the mechanism, ranging
from program transformation tools to an AOP language.

The principle behind the extension is simple: every JTL predicate implicitly carries with it an
unbounded array of baggage anonymousSTRINGvariables, which are computed by the predicate.
These variables are output-only—an invocation of a predicate cannot specify an initial value for
any of them. The compilation process translates intoDATALOG only baggage which is actually
used. Thus, the examples seen so far, as well as theirDATALOG equivalent, are not changed, since
no baggage variables were used.

In most output-producing applications, only the first baggage variable, called thestandard
outputor just theoutputof the predicate, is used. The output parameter is also called thereturn
valueof a predicate, in the context of output generation or program transformation.

The description begins (Section 4.6.1) with the assumption that there is indeed only one such
baggage. Implementation considerations are discussed in Section 4.6.2. Then, Section 4.6.3 ex-
plains how multiple baggage variables are managed, and Section 4.6.4 shows how escaping in-
side string literals can be used for producing more expressive output. A key feature of baggage
processing—the iterative production of output with quantifiers—is the subject of Section 4.6.5.

4.6.1 Simple Baggage Management

The essence of baggage extension is that the output of a compound predicate is constructed
by default from the component predicates. Since the initial purpose of output is to production
of JAVA code, we have that the output of JTL predicates that are alsoJAVA keywords (e.g.,
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synchronized ) return their own name on a successful match. Other primitive predicates (e.g.,
method ) return an empty string. Type and name patterns return the matching type or name. The
fundamental principle is that whenever possible, any predicate returns the text of aJAVA code
fragment which can be used for specifying the match.

The returned value of the conjunction of two predicates is the concatenation of the components.
By default, this concatenation trims white spaces on both ends of the concatenated components,
and then injects a single space between these. Disjunction of two predicates returns the string
returned by the first predicate that is satisfied. Thus, for example, the predicate

public static [ int | long ] field ’old?*’

can be applied to some field calledoldValue , in which case it will generate an output such as:

public static int oldValue

String literals are valid predicates in JTL, except that they always succeed. They return as output
their own value. By using strings, predicates can generate output which is different from echoing
their building blocks. For example, the pattern

class _ ”extends Number” (4.19)

generates, when applied to classComplex , the output

class Complex extends Number

The string literal in the pattern does not present any requirement to the tested program ele-
ment, and the string result need not be an echo of that element. Pattern (4.19), for example, will
successfully match classString , which doesnot extendNumber.

String literals are just one example of what we calltautologies: predicates which hold for any
value of their parameters. Tautologies are used solely for producing output. The most simple
tautology is the predicatenothing , which returns the empty string, i.e.,

nothing := ””; .

With this language extension, the JTL library was enriched with many such tautologies, e.g.,
visibility andmultiplicity , defined as

visibility := public | private | protected | nothing;
multiplicity := static | nothing;

The negation operator, “! ”, discards any output generated by the expression it negates.
For example,! static will generate an empty string when successfully matched. Thus
multiplicity can also be defined as

multiplicity := static | ! static ;

Some of the other tautologies in the library include:

• modifiers , returning the string of all modifiers used in the definitionJAVA code element;

• signature , returning the type, name, and parameters of methods, or just the type and
name of fields;

• header , including both the modifiers and signature;
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• torso , a primitive tautology returning the body (without the head and embracing curly
brackets) of a method or a class, or the initialization value of a field; and

• preliminaries , returning the package declaration of a class.

Tautologydeclaration , whose baggage is the full definition of a program element, is very
useful for exact replication of the matched element. It is defined thus:

declaration :=
[type | method] preliminaries header ”{” torso ”}”

| field preliminaries header ”=” torso;

The following demonstrates how tautologyheader and several other auxiliary tautologies
are defined:

header := modifiers declarator ’?*’ parents;
modifiers := concreteness strictness visibility . . .
concreteness := abstract | final | nothing;
strictness := strictfp | nothing;
. . .
declarator := class | interface | enum | @interface ;
parents := superclass optional_interfaces;
superclass := extends T ![T is Object] | nothing;
. . .

(4.20)

(The declaration ofoptional_interfaces is shown below, in Section 4.6.5.) The actual def-
initions are a bit more involved, since they have to account for annotations and generic parameters,
and must have overloaded versions for elements of kindMEMBER.

4.6.2 Implementation Issues

Although JTL can be implemented on top of the source code, the current implementation operates
on the compiled.class representation. Therefore, predicatetorso requires a decompilation
process.

Note that even if source code is used as input, the predicates above do not result in a direct
copy of the input; they “re-generate” the source. For example, a JTL program operating onJAVA

code such as

public String a, b = "Hello" ;

cannot hope to reproduce it verbatim, but rather the more canonical form:

public java.lang.String a = null;
public java.lang.String b = ”Hello”;

The output mechanism does not require the introduction of any side-effect to JTL. Rather,
when compiling JTL predicates toDATALOG, we have that the string output is presented as an
additional “hidden”, or implicit parameter toDATALOG queries. This parameter is used for output
only. For example, the JTL predicate

pa := public abstract ;
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compiles toDATALOG as:

pa(This,Result) :- public(This,Result1),
abstract(This,Result2),
concatenate(Result1,Result2,Result).

Finally, the extension requires that, for disjunction, output will be generated only for the first
matched branch. To this end, each branch of the disjunction is considered true only if all previous
branches are false; i.e., a pattern such as:

p_or_a := public | abstract ;

is compiled to:

p_or_a(This,Result):- public(This,Result).
p_or_a(This,Result):- !public(This,_), abstract(This,Result).

Note that the operation remains commutative with regard to the question of which program ele-
ments match it; the patternabstract | public will match exactly the same set of elements
aspublic | abstract will. Commutativity is eliminated only with regard to the string out-
put, where it is undesired.

4.6.3 Multiple Baggage

It is sometimes desirable to suppress the output of one or more constituents of a pattern, even if
they are not negated. This can be done by prepending the percent character, “%”, to the expression.
For example, the predicate

%public %static %final _ ’?*’; (4.21)

will match any public static final element, but print only its type and name, without the modifiers
that were tested for. Predicate (4.21) can also be written using square brackets, thus:

%[public static final ] _ ’?*’; (4.22)

The suppression syntax is in fact one facet of a more complex mechanism, which allows
predicates to generate multiple string results, directed to different “output streams”. By default,
any string output becomes part of string result 1, which is normally mapped to the standard output
stream (stdout in Unix jargon). Also defined are string result 0, which discards its own content
(/dev/null ), and string result 2, the standard error stream (stderr ).

To direct an expression’s string output to a specific string result, prepend a percent sign and
the desired string result’s number to the expression. A percent sign with no number, as used above
in (4.21) and (4.22), defaults to%0, i.e., a discarded string result.

For example, consider the following predicate:

testClassName := %2[ class ’[a-z]?*’ ”begins with a lowercase letter.”];

If matched by a class, it will send output to string result 2, i.e., the standard error stream; possible
output can be:

class yourClass begins with a lowercase letter.

If, however, the expression is not matched (in this case, because the class does not begin with a
lowercase letter), no output is generated.
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By using disjunction, we can present an alternative output for those classes that do not match
the expression; for example:

testClassName :=
%2[ class ’[a-z]?*’ ”begins with a lowercase letter.”]
| [ class ’?*’ ”is properly named.”];

(4.23)

Because it is not directed to any specific string result, the string result of the second part of the
predicate is directed to the “standard output”. The disjunction operator is evaluated in such a
manner that its right-hand operand can generate output only if its left-hand one yielded false.
Thus, the predicatetestClassName will generate exactly one of two possible messages, to one
of two possible output streams, when applied to a class.

A configuration file binds any string result generated by a JTL program to specific destinations
(such as files). The default destinations of string results 0, 1 and 2 can therefore be overridden,
and additional string destinations (unlimited in number) can also be defined.

JTL also includes mechanisms for redirecting the string result generated by a subexpression
into a different string result in the calling expression, or even to bind string results to variables.
The syntax%n>m p will redirect the string result of predicatep in output streamn into output
streamm of the caller. For example, the expression

[%2>1 p1] | ”failed” (4.24)

will yield the string result thatp1 sends to output stream 2, in output stream 1. Ifp1 fails, (4.24)
will generate the outputfailed. However, ifp1 succeeds without generating any output in stream 2
(e.g., it generates no output at all, or output to other streams only) then (4.24) will generate no
output.

To bind string results to a variable, the syntax%n>V p can be used, binding the output of
predicatep in output streamn to variableV of the caller. (On theDATALOG level, this implies
passingV as the implicit baggage variable when predicatep is invoked.)

4.6.4 String Literals

Baggage programming often uses string literal tautologies. Escaping in these for special characters
is just as withinJAVA string literals. For example,”\n” can be used to generate a newline character.
An easier way to generate multi-line strings, however, is by enclosing them in a\[... \] pair.

When output is generated, a padding space is normally added between every pair of strings.
However, if a plus sign is added directly in front (following) a string literal, no padding space will
be added before (after) that string. For example, the predicate

class ”New”+ ’?*’

will generate the output

class NewList

when applied to the classList .
The character# has a special meaning inside JTL strings; it can be used to output the value of

variables as part of the string. For example, the predicate

class ”ChildOf”+ ’?*’ is T ”extends #T” (4.25)

will yield

class ChildOfInteger extends Integer
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when applied toInteger . The first appearance ofT in predicate (4.25) captures the name of the
current class into the variable; its second appearance, inside the string, outputs its value.

Recall that both name and type patterns can be used to matchJAVA types. However, when
applied to types, a name pattern returns (as a string value) the short name of a class, whereas a
type pattern returns the fully-qualified class name. We can therefore write (4.25) as

class ”ChildOf”+ ’?*’ ”extends”_

to obtain

class ChildOfInteger extends java.lang.Integer

The sharp character itself can be generated using a backslash, i.e.,”\#”. To output the value
of # (the current receiver) in a string, just write”#”. For example, the following binary tautology,
when applied to an element of kindMEMBER, outputs the name of that element with the parameter
prepended to it:

prepend[Prefix] := ”#Prefix”+”#”;

In case of ambiguity, the identifier following the# character can be enclosed in square brackets.
More generally,# followed by square brackets can be used to access not only variables, but also
output of other JTL expressions. For example, a string literal such as

”#[public|private]” (4.26)

it will embed in the string the output ofpublic | private . As another example, Figure 4.10
shows the definition of a tautology that returns a renamed declaration of aJAVA method or field.
Renaming is achieved by prefixing a string to the current name of the element.

rename[Prefix] := modifiers prepend[Prefix] [
method (*) throwsList ”{ #[torso] }”

|
field ”= #[torso];”

];

Figure 4.10: A predicate for renaming methods and fields by adding a prefix

Note that using JTL expressions inside a string implies that this literal is no longer a tautology,
since it can now fail—e.g., for expression (4.26), in case the element at hand is neither public nor
private.

4.6.5 Baggage Management in Queries

In the rename predicate example (Figure 4.10), the term(*) outputs the list of all parameters
of a method. Set and list queries generate output like any other compound predicates. Different
quantifiers used inside the generated scope generate output differently. In particular,one will
generate the output of the set or list member that was successfully matched;exist , many and
all will generate the output of every successfully matched member; andno generates no output.
The extension introduces one additional quantifier, which is a tautology: writing

optional p;

in a quantification context prints the output ofp, butonly if p is matched.
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For example, the following predicate will generate a list of all fields and methods in a class
that were named in violation of theJAVA coding convention:

badlyNamedClassMembers := % class {
[field|method] ’[A-Z]?*’ ”is badly named.”;

}
(4.27)

By default, the opening and closing characters (() or {} ) print themselves; their output can
be suppressed (or redirected) by prepending a%to each character.

Two pseudo-quantifiers,first andlast , are in charge of producing output at the beginning
or the end of the quantification process. The separator between the output for each matched mem-
ber (as generated by the different quantifiers) is a newline character in set quantifiers, or a comma
in the case of list quantifiers. This can be changed using another pseudo-quantifier,between .
The tautologyoptional_interfaces used in the above definition ofheader (4.20) re-
quires precisely this mechanism:

optional_interfaces := implements : %{
first ”implements”;
exists _; −−and names of all super interfaces
between ”,”; −−separated by a comma
last nothing; −−and no ending text

%}
| nothing;

Since we use theexists quantifier, the entire predicate in the curly bracket fails if the class
implements no interfaces—in which case the “first ” string ”implements” is not printed; if
this is the case, then the last line of the definition ensures that the predicate remains a tautology,
printingnothing if need be.

4.7 Applications of the Program Transformation Extension

This section shows how JTL’s “baggage” extension can be used for various tasks of program
transformation. The description ignores the details of input and output management; the implicit
assumption is that the transformation is governed by a build-configuration tool such as Ant [132],
which directs the output to a dedicated directory (without overriding the originals), orchestrates
the compilation of the resulting source files, etc. This makes it possible to apply a JTL program in
certain cases to replace an existing class, and in others, to add code to an existing software base.

We are interested here in the following applications of this extension:

1. Program Transformation.Perhaps the most obvious application of the string result is to
generateJAVA code. With the extension described here, JTL becomes a general-purpose
transformation language. Each JTL program has thus two components: theguard [85],
which describes the pre-requisites for the transformation, and thetransformer, which is the
clockwork behind the production of output out of the matched code.

We argue that JTL can be used for general code transformations, e.g., it is straightforward to
write a small JTL program that, given an interface, generates a class boilerplate that imple-
ments this interface, including method bodies to be refined by a programmer. The converse,
a JTL program that elicits the class protocol and generates an interface out of it, is also easy.
Many other refactoring [102] tasks are readily implemented as JTL transformations.

Further, we show that JTL can be used to implement genericity inJAVA which does not
suffer from the restrictions due to erasure semantics and is as powerful asM IX GEN and
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NEXTGEN, rivaling even the rich expressive power of C++ templates. We further show that
JTL can be used for implementing mixins [38], much like what is done in theJAM system.

2. Using JTL as an AOP Language.The relationship between program transformation and
aspects is a fascinating subject [80, 98, 103, 159, 162]. The community is aware of this
relationship ever since the original introduction of AOP [151], which stated that “some
transformations are aspectual in nature”. To an extent, the application of aspects to code
belongs in the decades-old quest fordisciplinedprogram transformation [156]. Given a
piece of code, an aspect is an operator that modifies it through the injection of advice.

We give examples showing that JTL can be used to produceJAVA code that augments the
original code, or even replaces it entirely, and that this code production supports aspect
orientation. While in some senses, the code is not as elegant as in “pure” aspect-oriented
programming languages, JTL does introduce discipline into program transformations, in-
cluding the definition of pointcuts to which advice are applied. And because the pointcuts
themselves are defined in JTL’s powerful query language, we find that this toy AOP lan-
guage has some capabilities that are unmatched even byASPECTJ.

Finally, JTL can also be used as a rapid prototyping or implementation mechanism for new
AOP languages.

3. A Generative Language for Aspects.TheMETA-ASPECTJ project [138] pioneered the no-
tion of applying generative programming [75] to aspects. The idea here is that aMETA-
ASPECTJ program reads the input software and then generates, hand-tailors if you will,
aspects that can process this code.

We argue that JTL can be used in the same fashion, and can generateASPECTJ code instead
of JAVA ; the ASPECTJ code in turn modifies theJAVA program as part of the weaving
process.

4. Translation. The literature [224, 226] distinguishes betweenrephrasingtransformations
andtranslatingtransformations. Two of the examples presented above (an AOP language
and refactoring) are cases of rephrasing, while the last example (using JTL as a generative
language for aspects) is a case of translation. There are even more exciting translation
applications of JTL. We show here a JTL program that, given a set ofJAVA class definitions,
produces SQL statements that define a database schema to store instances of these classes.
In the same fashion, it is not difficult to generate an XML datatype definition out of a
class structure. One can further use JTL to generate the complementaryJAVA code that
stores objects in such an XML format (marshalling), or conversely, reads a matching XML
document and loads it into memory organized in this class structure (unmarshalling).

Some other translation applications which JTL can handle include a LINT-like tool for de-
tecting coding convention violations and potential bugs (“code smells”) [100] and generat-
ing a report as output, or a documentation tool which may elicit a JavaDoc skeleton out of
class signatures.

In a sense, these abilities are not surprising: software that can generate textual output, can, in
principle, generate programs in any desired programming language. There are however important
factors that make JTL better for this task. The production of output is animplicit component of
the pattern matching process. Programmer intervention is required only where the defaults are not
appropriate.

Section 4.7.1 briefly describes some ways in which JTL’s transformations can be used in a
JAVA IDE such as the eclipse system. A more interesting application is using JTL, as is, as an
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AOP language, as described in Section 4.7.2. In this application, each aspect is written as a JTL
predicate. Just like aspects, generic classes, and mixins, the predicates take a class parameter,
and generate another class out of it. In Section 4.7.3 we show how mixins and templates are
implemented with JTL. The translation subcategoy of program transformation is the subject of
Section 4.7.4, which shows how JTL can generate an SQL scheme definition out of aJAVA class
definition.

4.7.1 Using JTL in an IDE and for Refactoring

We have previously described (Section 4.4.1) the JTL Eclipse plug-in, which can be used for
making quick searches in a software base. We have also shown how JTL can be used to detect
programming errors and potential bugs. It should also be obvious how baggage output makes
it possible for JTL to not only detect such problems, but also provide useful error and warning
messages. Pattern (4.27) in the previous section shows an example.

JTL can also be put to use in some refactoring services supplied by the IDE. The following
pattern extracts the public protocol of a given class, generating aninterface that the class may
then implement:

elicit_interface := % class −−Guard: applicable to classes only
preliminaries ”interface” prepend[ ”I ”] −−Produce header

{ −−iterate over all members
optional %public ! static method header ”;”;

};

We see in this example the recurring JTL programming idiom of having aguard which checks
for the applicability of the transformation rule, and atransformerwhich is a tautology. (Note that
by convention, the output of guards is suppressed, using the percent character.) The interface is
generated by simply printing the header declaration of all public, non-static methods. Its name
equals the class name, with “I_ ” prepended.

The converse IDE task is also not difficult. Given an interface, the following JTL code shows
how, as done in Eclipse, a prototype implementation is generated:

defaultVal := −−the default value of any given type
%boolean ”false”

| %[ double | float ] ”0.0”
| %char ”’\0’”
| %primitive ”0”−−all other primitive types are integral
| %void nothing −−void methods return nothing
| ”null”; −−all reference types

gen_class := % interface −−Guard
preliminaries ”class” prepend[ ”C ”] ”implements #” {

header \[ {
return #[defaultVal];

} \]
}

The above demonstrates how JTL can be used much like output-directed languages such as
PHP [160] andASP [173]. The output is defined by a multi-line string literal, into which, at
selected points, results of evaluation are injected.

Another common IDE/refactoring job is the addition of standard code fragments to classes. For
example, inJAVA , theequals method is important for proper usage of classes in, e.g., the col-
lection framework, yet it proves nontrivial to implement [59]. The JTL pattern in Figure 4.11 adds

101



a proper implementation ofequals to its argument class, without changing anything else. The

1 addEquals := % class header %[# is T] declares: {
2 ![ boolean equals (Object)] declaration;

4 last \[
5 @Override boolean equals(Object obj) {
6 if (obj == null) return false; if (obj == this) return true;
7 if (!obj.getClass().equals(this.getClass())) return false;
8 #T that = (#T)obj; // downcast the parameter to the current type
9 #[T.compareFields] // invoke helper predicate for field comparison

10 return true; // all field comparisons succeeded
11 }
12 \];

14 compareFields := { −− generate field−comparison code
15 %[primitive field, ’?*’ is Name] −− guard for primitive fields
16 ”if (this.#Name != that.#Name) return false;”;

18 %[!primitive field, ’?*’ is Name] −− guard for reference fields
19 ”if (!this.#Name.equals(that.#Name)) return false;”;
20 }
21 }

Figure 4.11: A JTL transformation that generates a properequals method

term%class (line 1) is used as the first guard, filtering non-class elements. Next, theheader
tautology outputs the class’s header. The expression “%[# is T] ” captures the implicit param-
eter into the variableT, thereby making it accessible inside the generated scope.

We then usedeclares as a generator, and iterate over all members defined in this class.
Members that do not match the signature ofequals (as presented in line 2) will be copied without
change, using thedeclaration predicate. In effect, this filters out any existing definition of
the method we are about to add. Then, using the pseudo-quantifierlast , code for theequals
method is added at the end of the class body. This code meets the strict contract prescribed for
equals by theJAVA language specification.2

In line 9, the predicate invokes another predicate,compareFields , defined in lines 14–
20. This definition is located insideaddEquals itself, making it alocal definition, accessible
only from within the defining scope. Looking atcompareFields , we find that it provides two
different possible outputs for fields, each with its own guard: one for primitive fields and one for
reference-type fields, using the appropriate comparison mechanism in each case.

4.7.2 JTL as a Lightweight AOP Language

With its built-in mechanism for iterating over class members, and generateJAVA source code as
output, it is possible to use JTL as a quick-and-dirty AOP language. The following JTL predicate
is in fact an “aspect” which generates a new version of its class parameter. This new version is
enriched with a simple logging mechanism, attached to all public methods by means of a simple

2However, this code will not correctly handle recursive references. A more elaborate version, for handling such
cases, is also possible.
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“before” advice.

loggingAspect := % class header declares: {
targetMethod := public ! abstract method; −−pointcut definition
%targetMethod header \[ {

System.out.println(”Entering method #”);
#[torso]

} \]
| declaration;

}

The local predicatetargetMethod defines the kinds of methods which may be subjected to
aspect application—in other words, it is a guard serving as a pointcut definition. The condition
in the existential quantifier is a tautology; therefore, output will be generated for every element in
the set. The first branch in the tautology, its guard, is the term%targetMethod .

If the member is matched against the guard, the method’s header is printed, followed by amod-
ified version of the method body. If, however, the member does not match thetargetMethod
pointcut, the disjunction alternativedeclaration will be used—i.e., class members that are not
concrete public methods will be copied unchanged.

Having seen the basic building blocks used for applying aspects using JTL, we can now try
to improve our logging aspect. For example, we can change the logging aspect so that it prints
the actual arguments as well, in addition to the invoked method’s name. To do so, we define the
following tautology:

actualsAsString := %(
first \[”(” + \];
last \[+ ”)” \];
between \[+ ”, ” + \];
argName; −−at least one; iterate as needed

%)
| ”()”; −−no arguments

Given a method signature with arguments list(type 1 name1, . . . type n namen) , this predicate
will generate the output

”(” + name1 + ”, ” + . . . + namen + ”)”

which is exactly what we need to print the actual parameter values. The code generated is specific
per method to which the advice is applied. Any attempt to implement an equivalent aspect with
ASPECTJ requires the usage of runtime reflection in order to iterate over each actual parameter in
a method-independent manner.

JTL AOP can be used to define not onlybefore , but alsoaround , after , after
returning or after throwing advice. This is done by renaming the original method, and
creating a new version which embeds a call to the original. Figure 4.12 introduces a version of
the logging aspect which also reports returned values (or thrown exceptions). The predicate in
the figure preforms two “iterations” over the members declared in a class. In the first iteration
(lines 5–6), methods which match the pointcut (defined in line 2) are renamed. The second itera-
tion (lines 9–30) regenerates matching methods with a new body that calls their renamed version,
while adding the appropriate logging instructions.

It is interesting to see how guards and transformations are nested in the second iteration. At
first, the phrase%targetMethod header has two components: the guard, which lets through
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1 loggingAspect2 := % class header declares: {
2 targetMethod := public ! abstract method; −− pointcut definition

4 −− rename matching methods:
5 %targetMethod rename[ ”original ”];
6 | declaration; −− other elements copied unchanged.

8 −− And now, reiterate over matching methods:
9 %targetMethod header ”{” −− regenerate header and ‘‘{’’

10 [ −− Regenerate torso, differently for void and non−void methods
11 %[ ! void , _ is Return ] −− Guard for non−void methods
12 \[ System.out.println(”Entering #” + #[actualsAsString]);
13 try { // Invoke the renamed original:
14 #Retrun result = #[prepend[”original ”]] #[argNames];
15 } catch (Throwable e) {
16 System.out.println(”Exception: ” + e); throw e;
17 }
18 System.out.println(”Returned ” + result);
19 return result;
20 \]
21 | −− deal with void methods
22 \[ System.out.println(”Entering #Name” + #[actualsAsString]);
23 try { // Invoke the renamed original:
24 #[prepend[”original ”]] #[argNames];
25 } catch (Throwable e) {
26 System.out.println(”Exception: ” + e); throw e;
27 }
28 \]
29 ]
30 ”}”; −− generate closing ‘‘}’’
31 }

Figure 4.12: A logging aspect defined as a JTL predicate

only members that match the pointcut, and a tautology which regenerates the header of matching
items.

Subsequently, we see the compound predicate in lines 10–29, which is in charge of printing
the method’s new torso. This disjunction predicate has two parts: in the first (lines 11–20), a guard
is applied to produce output for non-void methods; the second component (lines 22–28) comes
into action if the first fails, and produces output solely for void methods. In the AOP terminology,
we see that pointcuts and advices can be intermixed and nested.

Note how the arguments list is copied to create the method invocation, using#[argNames] .
This tautology (for methods or constructors) is defined thus:

argNames := ( optional argName );

Because the default separator in list generators is a comma, the result is formatted exactly as we
need it.

Unlike ASPECTJ aspects, which useObject references to capture return values in a type-
independent manner and must therefore rely on the boxing and unboxing of primitive values,
the aspect presented above involves no boxing of primitives. For example, if the method being
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processed is of typeint , then the generated replacement method will include a local variable
result of the primitive typeint .

The main limitation of writing aspects in JTL is that we have no way to traverse and modify the
internals of method bodies. The JTL AOP language is therefore limited toexecution pointcuts
only. In particular, advice that should be applied to each access to a variable (get and set
pointcuts), or advice that should be applied to exception catch blocks, etc., cannot be created with
JTL. This limitation is not unique to JTL, however; several other AOP solutions take the same
approach, some (such as the Spring framework) by a well-reasoned, explicit choice. Thus, JTL
AOP can be classified asblack-box AOPusing Filman and Friedman’s [97] terminology.

In the examples above, the generated class has the same name as the original class, i.e.,
weaving-by-replacement is used. However, JTL can just as easily be used for weaving-by-
subclassing, and in particular can be used for implementing shakeins. Indeed, this is but one ex-
ample of how JTL can be used to implement other AOP languages; Czarnecki and Eisenecker [75]
explain that the “striking similarity” between code transformations aspects stems from the fact that
both “may look for some specific code patterns in order to influence their semantics,” and “[f]or
this reason, transformations represent a suitable implementation technology for aspects or aspect
languages”.

The following section discusses additional uses for JTL, outside of AOP, that can be reached
by replacing, augmenting, or subclassing existing classes.

4.7.3 Templates, Mixins and Generics

Since JTL can generate code based on a givenJAVA type (or list of types), it can be easily used
to implement generic types. A simple example is provided by thesingleton predicate (Fig-
ure 4.13), which is a generic that generates aSINGLETON class [105] from a given base class.

singleton := ”public” class ”Singleton”+ ’?*’, %[_ is T] {
%[ public constructor() ]
| %2 ”#T has no public zero−args constructor.”;

last \[
private #T() { } // No public constructor

private static #T instance = null;

public static #T getInstance() {
if (instance == null)

instance = new #T();

return instance;
}

\];
}

Figure 4.13: A JTL “generic” that generatesSINGLETON classes

Given class, e.g.,Connection , the predicate shown in the figure will generate a new class,
Singleton Connection , with the regular singleton interface.3 This seemingly trivial example

3It is a relatively simple change to make this JTL pattern generate a class thatreplacesthe source class, rather than
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cannot be implemented usingJAVA ’s generics, because those rely on erasure [39]. It takes the
power ofNEXTGEN, with it’s first-class genericity, to define such a generic type.

The JTL pattern is also superior to the C++ template approach, because the requirements
presented by the class (itsconceptof the parameter) are expressed explicitly. The lack of concept
specification mechanism is an acknowledged limitation of the C++ template mechanism [210,
211]. With the JTL example in Figure 4.13, in case the provided type argument does not include
an appropriate constructor (i.e., does not match the concept), a straightforward error message is
printed tostderr . This will be appreciated by anyone who had to cope with the error messages
generated by C++ templates [210].

Because the generic parameter does not undergo erasure, JTL can also be used to define mix-
ins [38]. Figure 4.14 is an example that implements the classic mixinUndo [8]. Here, too, the

undoMixin := ”public” class ”Undoable#T” extends T {
%[ ! private void setName(String) ]
| %2 ”#T has no matching setName method.”;

%[ ! private String getName() ]
| %2 ”#T has no matching getName method.”;

all ![ ! private undo() ]
| %2 ”Conflict with existing undo method.”;

last \[
private String oldName;

public void undo() {
setName(oldName);

}

public void setName(String name) {
oldName = getName();
super.setName(name);

}
\];

}

Figure 4.14: The Undo mixin as a JTL pattern

pattern explicitly specifies its expectations from the type argument—including not only a list of
those members that must be included, but also a list of members that mustnot be included (to
prevent accidental overriding [8]).

4.7.4 Non-JAVA Output

There is nothing inherent in JTL that forces the generated output to beJAVA source code. Indeed,
some of the most innovative uses generate non-JAVA textual output by applying JTL programs to
JAVA code. This section presents one such example in detail.

A classic nonfunctional concern used in aspect-oriented systems is persistence, i.e., updating
a class so that it can store instances of itself in a relational database, or load instances from it. In

generate an additional one.
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most modern systems (such as Hibernate [22] and version 5 ofJAVA EE), the mapping between
JAVA classes and database tables is defined using annotations. For example, Figure 4.15 are two
classes, each mapped to a different database table, with a foreign key relationship between them:
In this simplified example, the annotation@Table marks a class as persistent, i.e., mapped to a

@Table class Account {
@Id @Column long id; // Primary key
@Column float balance;
@ForeignKey

@Column(name="OWNER_ID") Person owner;
}

@Table(name= "OWNER") class Person {
@Id @Column long id;
@NotNull @Column String firstName;
@NotNull @Column String lastName;

}

Figure 4.15: Two JAVA classes with annotations that detail their persistence map-
ping

database table. If thename element is not specified, the table name defaults to the class name.
Similarly, the annotation@Columnmarks a persisted field; the column name defaults to the field’s
name, unless thename element is used to specify otherwise. The special annotation@Id is used
to mark the primary-key column.

Given classes annotated in such a manner, we can use thegenerateDDL JTL program (Fig-
ure 4.16) to generate SQL DDL (Data Definition Langauge) statements, which can then be used
to create a matching database schema. Using thefirst , last , andbetween directives, this
query generates a comma-separated list of items, one per field in the class, enclosed in parenthe-
sis. The program also includes error checking, e.g., to detect fields with no known matching SQL
column type.

When applied to the two classes from Figure 4.15,generateDDL creates the output shown
in Figure 4.17.

In much the same way, JTL can be used to generate an XML Schema [96] or DTD [40]
specification, describing an XML file format that matches the structure of a givenJAVA class. This
is the reverse of the operation performed by the JAXB compiler [186], which generates class files
given Schema or DTD definitions.

4.8 Related Work on Program Transformation

The work on program transformations is predated to at least D. E. Knuth’s call for “program-
manipulation systems” in his famous “Structured programming with go to statements” paper [156].
Shortly afterwards, Balzer, Goldman and Wile [19] presented the concept oftransformational
implementation, where an abstract program specification is converted into an optimized, concrete
program by successive transformations.

By convention, program transformation in JTL has two components:guards (similar to a
“pointcut” in the AOP terminology), which are logical predicates for deciding the applicability
of a transformer(similar to “advices” of the jargon), which is a tautology predicate in charge of
output production. The examples included in the previous section show that JTL is an expressive
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generateDDL := % class ”CREATE TABLE ” tableName %{
first ”(”; last ”)”; between ”,”;

%[ @Column field ] =>
%sqlType
| %2 [ ”Unsupported field type, field” ’?*’];

columnName sqlType sqlConstraints;
%}

sqlType := −−simplified version
%String ”VARCHAR”

| %integral ”INTEGER”
| %real ”FLOAT”
| %boolean ”ENUM(’Y’,’N’)”
| %BigDecimal ”DECIMAL(32,2)”
| %Date ”DATE”
| foreignKey;

sqlConstraints :=
[ %@NotNull ”NOT NULL” | nothing ]
[ %@Id ”PRIMARY KEY” | nothing ]
[ %@Unique ”UNIQUE” | nothing ];

foreignKey := %[ _ is FK ] −−target class
”FOREIGN KEY REFERENCES” FK.tableName;

tableName :=
[ %@Table( name=TName:STRING) ”#TName” ]

| [ %@Table() ’?*’ ] −−Default table name = class name
| %2 ”Class is not mapped to DB table.”;

columnName :=
[ %@Column(value=CName: STRING) ”#CName” ]

| [ %@Column() ’?*’ ]; −−Default column name = field name

Figure 4.16: Patterns for generating SQL DDL statements for annotated persistent
JAVA classes

tool for such output production—the transformation, or the process of aspect application, is syntax
directed, much like syntax-directed code generation in compiler technology [2].

The JTL system can be categorized using Wijngaarden and Visser’s taxonomy of transforma-
tion systems [224], consisting of three dimensions:

1. Scopepertains to the extent of the portion of an object program covered by a single transfor-
mation step, which can range from a single instruction to an entire program. The examples
given here, including the application of JTL as an AOP language, arelocal-local transfor-
mations, since both input and output do not consult global information. This situation is
typical to JTL programs, as a result of the the syntax-directed translation engine, but it is
possible at least in principle to write programs with more global scope for either input or
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CREATE TABLEAccount (
id INTEGER PRIMARY KEY,
balance FLOAT,
OWNER_IDFOREIGN KEY REFERENCESOWNER,

);
CREATE TABLEOWNER (

id INTEGER PRIMARY KEY,
firstName VARCHAR NOT NULL,
lastName VARCHAR NOT NULL,

);

Figure 4.17: The DDL statements generated by applying thegenerateDDL pat-
tern (Figure 4.16) to the classes from Figure 4.15 (shown pretty-
printed for easier reading)

output. As a minor example, the SQL DDL generation program examines the annotations
attached to classes other than the input class—as directed by the types of fields marked as
foreign keys.

2. Thedirectionof a transformation is either forward (source driven) or reverse (target driven).
JTL is primarily source driven, in that the input structure orchestrates the generation of
output. The reverse translation mode is one in which, just as being done in the ASP and
PHP languages, the output (normally HTML text in these two languages) is a template, with
placeholders ready to be filled by functions of the input. As some of the examples indicate,
reverse direction transformation is possible in JTL. This is achieved by means of the ability
to embed the output of predicates inside string literals.

3. Different transformation engines use a different number ofstages. Wijngaarden and Visser
make the distinction betweensingle-stage, multi-stage modifyand multi-stage generate
techniques. JTL applications are a single-stage approach, since the target is generated in
one single traversal over the source. It is future research to evaluate the benefits of using
JTL in a multi-stage-generate approach, where every traversal generates a piece of output
which is then merged to create the final output. A more interesting direction for future re-
search is the multi-stage-modify approach, by which the target is generated incrementally
by making several traversals over the source, which corresponds (if JTL is used as an AOP
language) to famous questions of aspect interferences, priority, etc.

In as sense, our paper sides with the perspective by which aspects are thought of as transfor-
mations of a software base; aspect application is a transformation of the rephrasing kind, which
also includes inlining, specialization, and refactoring. This perspective was presented earlier by
Fradet and S̈udholt [103], whose work focused on “aspects which can be described as static,
source-to-source program transformations”. It was in fact one of the earliest attempts to answer
the question, “what exactlyare aspects?”. Unlike JTL, the framework presented by Fradet and
Südholt utilizes AST-based transformations, thereby offering a richer set of possible join-points,
enabling the manipulation of method internals.

Lämmel [159] also represents aspects as program transformations, whereas the developers of
LOGICAJ [195] go as far as claiming that “[t]he feature set ofASPECTJcan be completely mapped
to a set of conditional program transformations”.4 LOGICAJ uses program transformations as a
foundation for AOP, and in particular for extending standard AOP with generic aspects. More

4http://roots.iai.uni-bonn.de/research/tailor/aop
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recently, Lopez-Herrejon, Batory and Lengauer [162] developed an algebraic model that relates
aspects to program transformations (and used this model to explain several of the known problems
of traditional AOP).

JTL is not the first system to use logic-based program transformation for weaving aspects.
Indeed, De Volder and D’Hondt’s [80] coin the termaspect-oriented logic meta programming
(AOLMP) to describe logic programs that reason about aspect declarations. The system they
present is based onTYRUBA [79], a simplified variant ofPROLOG with special devices for ma-
nipulatingJAVA code. However, whereas JTL presents an open-ended and untamed system for
manipulatingJAVA code, De Volder and D’Hondt’s system presents a very orderly alternative,
where output generated not by free-form strings but rather using quoted code blocks. It is signifi-
cantly easier to define and reason about aspects usingTYRUBA.

We therefore find that, compared to other AOP-by-transformation systems, JTL is limited in
the kind of transformations it can apply for weaving aspects, and the level of reasoning about
aspects that it provides—which is why we view it as a “quick-and-dirty” AOP language. The
windfall, however, is that program transformation in JTL is not limited to AOP alone, as evident
from some of the examples provided in this paper—the generation of stub classes from interfaces,
the generation of SQL DDL to match classes, the definition of generic classes, etc.

4.8.1 Output Validation

The trust we can put in any code-generation mechanism can be increased by the assurance that it
will always generate valid code in the target language. Unfortunately, for arbitrary grammarsG1

andG2, it is undecidable to determine whetherL(G1) (i.e., the language defined by a grammarG1)
is a subset ofL(G2) (see e.g., [204, p. 172]).

We must therefore infer that JTL is not “type safe”, in the sense that a JTL program may gen-
erate output that is not a valid program in the target language, and no mechanism exists for proving
the correctness of arbitrary JTL programs—or indeed, arbitrary code generation mechanisms of
any kind; even the task of proving that a plain procedural program produces correct SQL is known
to be difficult [57, 168] and, in its most general form, undecidable. However, given aparticular
JTL programp, there is still hope for proving thatp always generates valid programs in aspecific
target language.

The problem of proving that a code-generating programp always generates valid code is in
fact twofold:

(a) Finding the grammarGp that describes all possible output texts, and

(b) Proving thatL(Gp) ⊆ L(G), whereG is the grammar of the target language.

There are known solutions for some particular cases, e.g., Minamide and Tozawa [176] have shown
practical algorithms for proving that PHP programs generate valid XHTML output.

Whereas in imperative programs the first step (finding the output grammar) is necessarily an
approximation, the declarative nature of JTL renders the first step trivial: in JTL,the program itself
reads as a context-free grammar of all possible outputs, i.e.,Gp , p. For example, the predicate

[ public | protected ] static

has two possible outputs,public static or protected static.
This simplification of the output validation problem isa key benefitof the declarative approach.

It also implies that human programmers will find it significantly easier to review the transformation
program and verify that only valid code in the target language can result, compared to the same
verification task given an imperative program transformation mechanism.
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Previous results [176] show that it is possible (and practical) to decide ifL(G) ⊆ L(Gxml),
whereG is a context-free grammar andGxml is an XML grammar defined, e.g., using a DTD
specification. It is therefore possible and practical to decide if a given JTL program generates
valid XML for any given XML grammar.

The problem is more difficult, however, for target languages such of SQL orJAVA . Perhaps
type safety in this case can be achieved by augmenting JTL with an auxiliary type system, which
reflects the type system of the parse tree of the host language, so the process of type checking of
predicate definitions in JTL will also prove that the output is correct—much as was done in the
evolution of GOTECH into type-safeMETA-ASPECTJ. Still, even if the problem is decidable, with
high-level languages, meeting the language grammar does not necessarily imply that the program
is valid, since certain semantic demands must also be met (e.g., inJAVA , no two local variables in
the same innermost scope can have the same name; this is not reflected in the language’s CFG).

Compared to JTL,ASPECTJ and other AOP languages are type-safe in the sense that it is
guaranteed that an application of an aspect to a syntactically correctJAVA program will yield a
program which is still executable. Deep inside, this type safety is achieved by a general “proof
system” (so to speak) that must automatically determine, for any predicatest andg, whethert
follows fromg, wheret denotes the demands and assumptions that an advice makes of the advised
code, andg the demands that the pointcut definition makes of the same code. Clearly, the difficulty
of writing such a proof system increases with the expressive power of the language in whicht
andg are written. In the case thatt andg use the full power of first order predicate logic, then the
problem becomes undecidable, and it remains so even if we restrict the expressive power to that of
context-free languages. “Type safety” inASPECTJ is achieved by minimizing the expressiveness
of bothg andt; complex situations, e.g., iteration over parameters of advised methods, are deferred
to runtime and must be implemented byJAVA code (cf. the JTL aspect in Figure 4.12, which
performs this iteration ahead-of-time).

Unlike ASPECTJ code, code generated by a JTL program is never executed directly; it must
first be compiled by the target language’s compiler. When JTL is used as aJAVA -to-JAVA trans-
formation mechanism, and in particular as an AOP language, its output is always processed by a
JAVA compiler. If, in certain situations, the JTL program’s output is illegalJAVA code, then these
errors are still detected at compile time. We therefore conclude that the lack of output type safety
in JTL will never lead to runtime errors due to misuse of types.

4.9 Summary

JTL is a novel,DATALOG-based query language designed for queryingJAVA programs in binary
format. It can also by extended to support program transformation, without breaking the logic
programming paradigm.

Additional JTL-related research. Work by Maman [67, Sec. 6] shows that JTL, even when
implemented as an interpreter, outperforms comparable solutions significantly, both in terms of
runtime performance and in the size of the database that can be effectively searched.

As mentioned earlier, JTL has been developed with theJAVA language in mind. Nonetheless,
our theoretical observations, as well as many of the implementation-level concerns, are applicable
to other object-oriented programming languages. Additional work [66] shows how JTL’s concepts
can be ported to other programming languages. In particular, it was shown that JTL can be ported
to C# (including support for program elements that are alien toJAVA , such as delegates) simply
by replacing the native predicates in JTL’s standard library.

A paper by S. Cohen, Gil and Zarivach [58] investigates the termination question in JTL’s
underlyingDATALOG model.
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Using JTL with Shakeins. With regard to the key subject of this work, we believe that JTL can
serve well for both of its originally stated purposes: expressing rich pointcuts for use with shakeins
(and with AOP in general), and expressing concepts for restricting the application of shakeins to
matched classes (and concepts for generic programming in general).

With the introduction of JTL as a pointcut- and concept-specification language, we believe
our description of the shakein mechanism is complete. The following two chapters present lan-
guage mechanism that can co-exist alongside shakeins, making the use of shakeins more natural
as well as more powerful. Interestingly, both suggested mechanisms—factories (Chapter 5) and
object evolution (Chapter 6)—prove to be of use and of interest in their own right, although their
usefulness is magnified in the presence of the shakein language construct.
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Chapter 5

Factories

The factory-owning class controls the means of production.

— Karl Marx, Das Kapital

The ASPECTJ2EEexperiment indicates that the shakein semantics integrates well with current
J2EE server architectures. However, the same experiment also led us to the conclusion that pro-
gram modules should be provided with a better mechanism for controlling object instantiation.
We therefore presentfactoriesas a new language construct, providing each class with complete
control over its own instance-creation process.

But the motivation for factories is deeper than merely extending language support for enter-
prise applications; we argue that there are good programming-language theoretical reasons for
adding the factories extension to all object-oriented programming languages. Good programming
languages support, at the language level, the general principle of hiding implementation details
from the client [188]. Indeed, most contemporary object-oriented programming languages let,
sometime even force, the programmer to hide the implementation details of methods that a class
offers. An inspiring case in point is Meyer’sprinciple of uniform access[169, p.57], stating that

“All services offered by a module[i.e., a class]should be available through a uniform
notation, which does not betray whether they are implemented through storage or
through computation.”

However we observe that, despite the progress in language design, theconstructorsin object-
oriented languages (calledcreation proceduresin some of these) still reveal more than they should
of their implementation secrets. Constructors are distinguished from the other services that a
class may offer in that the client cannot apply them to a polymorphic object; instead the client is
responsible for creating such an object, and therefore must know the precise name of the class that
creates it.

The polymorphic nature of classes is advertised as means for separating interface from im-
plementation. Object-oriented polymorphism means that a client may use instances of different
subclasses to implement the same protocol. But the trouble is that, in order to be able to use such
instances, one needs to create them somewhere, and the creation process is coupled with the name
of the creating class. Breaking this coupling seems to be an intriguing chicken and egg riddle:
Interface (or protocol) can be separated from implementation, but in order to select a particular
implementation of a given protocol one must be familiar with at least one of these implementa-
tions.

Our solution to this cyclic dilemma is by making the selection of an implementation part of
the interface. In the object-oriented terminology, this means that we allow a class to offer a set of
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services, what we callfactories, for generating instances of its various subclasses. Factories are
first-class class members (alongside methods and constructors), but, unlike constructors, factories
encapsulate instance management decisions without affecting the class’s clients. Our contribution
includes also a re-implementation of theJAVA compiler that supports factories; this implementa-
tion requires no changes to the JVM.

Factories directly attack thechange advertising problem: Suppose that the implementation of
a class (indeed, the internals of any software unit) is changed or specialized, but, as is the case
with inheritance or shakeins, that the original version still remains. Then, the fact that there was a
change must be advertised to the clients that wish to enjoy its benefits. Specifically, an instance of
a classC ′ inheriting fromC can be used anywhere an instance ofC is used; but clients must be
aware thatC ′ exists, and be familiar with its name and its particular repertoire of constructors, in
order to create such instances.

Existing solutions to the change advertising dilemma can be found in several popular frame-
works, which act outside of the programming language. This includes, for example, the J2EE
mechanism for obtaining instances of Enterprise JavaBeans. Clients must not directly invoke
constructors for EJBs; rather, special methods of “home objects” [202, Chap. 5] must be used,
effectively encapsulating the creation process and providing the platform with the ability to decide
an instance of which (sub)class will be generated. The same is true for clients in theASPECTJ2EE
framework, as presented in Chapter 3.

Likewise, users of the Spring Application Framework should only obtain instances (of any
class) by using special “bean factory” objects. The need for factories is further evident from the
popularity and usefulness of design patterns that strive to emulate their functionality, including
ABSTRACT FACTORY, FACTORY METHOD, SINGLETON [105], andOBJECTPOOL [122]. How-
ever, both the frameworks and the design patterns introduce certain restrictions that the developers
must adhere to (such as never invoking constructors directly). Just like these design patterns,
factories are not compelled to return anewclass instance. In not betraying the secret whether a
new instance was generated or an existing one was fetched, they can be thought as applying the
principle of uniform notation to instantiation. Much as with uniform access for “features” (at-
tributes or functions) inEIFFEL, factories prevent upheaval in client classes whenever an internal
implementation decision of the class is changed.

More concretely, we describe the design and implementation of an extension to theJAVA pro-
gramming language to support factories. In this extension, factories act as methods that overload
thenew operator. But, unlikenew overloading in C++, factories are not concerned with memory
allocation but rather with instance creation and specific subclass selection decisions. We offer two
varieties of factories:

• Client-side factorieshelp localize instantiation statements, whereby a re-implementation
can be selectively injected to certain clients.

• Supplier-side factoriesprovide classes with fine control over their instantiation, and help in
a global advertising of a change in the implementation.

Factories enable the encapsulated implementation of the “creational” design patterns listed
above, either for all clients (using supplier-side factories) or for specific ones (using client-side
factories). They provide a language-level solution to the change advertising dilemma, without
presenting developers with any restrictions or complications. And they do away with the need for
specialized mechanisms for obtaining instances of shakein-enhanced beans inASPECTJ2EE.

Chapter outline. Section 5.1 starts by setting forth a common terminology for the discussion,
and tries to unify some of the different perspectives offered in the literature to the class concept.
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Using this terminology, Sections 5.2 and 5.3 expand on the motivation, by highlighting certain
limitations of constructors. Factories are the subject of Section 5.4, which describes theirJAVA

syntax and some of the applications. This section also shows how factories support many classical
design patterns. Section 5.5 describes how coupling between classes can be decreased using fac-
tories, and Section 5.6 describes the notion of client-side factories. Finally, Section 5.7 discusses
the extension of the factories idea to other programming languages and concludes.

5.1 Terminology

There are many ways in which people perceive the notion of class: as a “repository forbehavior
associated with an object” [44, p.13], a “unit of software decomposition” and a “type” [169,
pp.170–171], a “tool for creating new types” [209, p.223], a “group [of objects]” [142, p.50]1, a
“set of objects that share a common structure and a common behavior” [35, p.93], etc. This section
tries to unify these perspectives and propose a terminology (a conceptual framework if you will)
for comparing and understanding the notion of a class in different programming languages.

We distinguish five, not entirely orthogonal, dimensions of class analysis:purpose, common-
ality, encapsulation, morphability, andbinding. The most interesting dimension ispurpose, al-
ready presented in Section 2.1.1, by which we identify, for each syntactical element of a class, a
programming-language purpose. In Section 5.2 we shall argue that, judged by these dimension of
evaluation, constructors make a bit of weird bird. Let us now describe in greater detail each of the
five dimensions in turn.

1. Purpose. As detailed in Section 2.1.1, we characterize the constituents of a class into five
different purposes: Two interface purposes, theforgeand thetype, and three materialization
purposes, theimplementation, themill, and themold.

Specifically, theforgeof the class is the collection of operations that can be used to create
objects; thetypeis the set of messages that these instances may receive, along with their vis-
ibility specification; and theimplementationis the body of the methods executed in response
to these messages. Themold is the memory layout which instances of this class follow; it
consists solely of field definitions. Themill is the set of constructor bodies.

2. Commonality. This dimension makes the distinction betweencommonelements of the
class notion (e.g., class variables and methods inSMALLTALK [113]) andparticular such
elements (e.g., instance variables and methods). More precisely, an element is common if its
incarnation in different instances of the class is identical; otherwise, it is particular. Thus,
particular elements may be used only in association with a specific class instance. Also,
common elements cannot access particular elements.

3. Encapsulation (also known asVisibility.) A class may encapsulate (i.e., set the visibility
of) its elements. C++’s three visibility levels, just asJAVA ’s four, are orthogonal to com-
monality.

4. Morphability. Morphability indicates the class element’s ability to obtain a shape, or be
re-shaped, in a subclass. In other words, morphability pertains to the kind of changes that a
subclass may apply to components of the base class in the course of inheritance.

There is a great variety in the morphability capabilities in different programming lan-
guages. For example, C++ allows a subclass to decrease the visibility of inherited members,
OBERON [230] forbids overriding,JAVA sportsfinal members and allows data members

1But also a “template for several objects . . .[a description of]how these objects are structured internally.”
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to be hidden [117, Sect. 8.3.3], whileEIFFEL allows re-implementation of a data member
as a method, and method renaming. The analysis of this variety in full is beyond the scope
of this work.

5. Binding. As the name suggest, in this dimension we make the distinction between statically-
bound and dynamically-bound elements. Of course, this distinction can be made only for
class elements which can be replaced or altered in a subclass. Non-virtual methods in
C++ are famous for being statically bound.

Observe that in most languages, commonality and binding are not orthogonal. Specifically,
we find thatcommon elements are often statically bound. The linkage between static binding
and commonality is so entrenched that common methods and fields in languages such as
JAVA , C# and C++ are marked with thestatic keyword.

The phenomena can be explained by the reliance of dynamic binding on dispatching in-
formation associated with individual objects. Common elements are statically bound since
they may exist even when there are no instances to the class.

5.2 Constructor Anomalies

Factories, the language extension proposed in this Chapter, are methods which return new class
instances. Syntactically, a factory is a method which overloads thenew operator with respect to a
certain class.

In the terminology of the previous section, the signature of a factory belongs in the forge, while
its body belongs in the mill. In this respect, factories are similar to constructors in mainstream
object-oriented languages, the means by which a class’ clients may obtain instances.

In analyzing constructors (in, e.g.,JAVA or C++) with this terminology, we find that they
exhibit three fundamental anomalies, which underline the need for the alternative approach that
factories offer:

1. Commonality. In JAVA , the syntax for creating an instance of classMyClass is
new MyClass() , i.e., it refers to the class name. In contrast, inEIFFEL the syntax is
!!myInstance , i.e., referring to a variable. The difference between the languages is not
a coincidence. Constructors are anomalous in that they aresimultaneously common and
particular: common—since they are invocable without an instance; particular—since they
work on an object.

This anomaly raises the dilemma of method binding inside constructor bodies. Method
invocation from the mill follows a static binding scheme in C++ (even forvirtual meth-
ods). inJAVA andC#, however, dynamic binding is used. Neither approach is without fault.
Static binding can lead to illegal invocation of pure virtual methods. Dynamic binding pre-
vents methods, invoked from within the mill, from assuming that all fields were properly
initialized. Dynamic method binding in constructors leads, among other things, to difficul-
ties in implementing non-nullable types, as described by Fähndrich and Leino [95]: during
construction, fields of non-null types may contain null values.

2. Morphability. In examining the morphability of the five facets of a class purpose, we find
that changes to four out of these are not arbitrary: The type definition of a subclass is an
extensionof the type definition of the superclass. Similarly, the mold of a subclass is an
extensionof the mold of the superclass. Also, the implementation can eitherreplaceor
extendthe implementation in the superclass, and the mill (constructor body of a subclass)
mustextend(i.e., invoke) the mill of the superclass.
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In contrast, the forge of the subclass isindependentof the forge of the superclass—the
forge cannot be extended: it is not even inherited, and each class must define its own set
of constructor signatures anew. The second constructor anomaly lies in the fact that thethe
construction protocol is not inherited, yet, each constructor bodymust invoke a constructor
of the base class.

3. Binding. Third, it is mundane to see that a call to a constructor obeys a static binding
scheme, and it takes just a bit of pondering to understand the difficulties that this scheme
brings about. If a classC ′ inherits fromC, thenC ′ should be always substitutable forC.
An annoying exception is made by constructor invocation sites in client code; these have to
be manually fixed in switching fromC to C ′.

The Gang of Four [105, p.24] place this predicament first in their list of causes for redesign,
saying: “Specifying a class name when you create an object commits you to a particular
implementation instead of a particular interface”. With similar rationale, the very first item
in Bloch’s work on proper use of theJAVA language [29] recommends the use of static
methods over constructors for obtaining instances of classes.

Interestingly, inEIFFEL, although it has a strict dynamic binding policy, and although cre-
ation methods can be overridden, and although creation syntax is similar to method invoca-
tion, it is still the case that creation instructions such as!! x.make are statically bound.

5.3 Stages of Object Creation

Roma non fu fatta in un giorno.

— Italian proverb

Figure 5.1 demonstrates another issue with constructors. The figure depicts abstract classBaby
whose constructor announces the baby’s birth, and concrete classNamedBaby inheriting from it.
Methodannounce is refined inNamedBaby, extending the announcement with details about
the newborn’s gender and name.

A client who has new baby boy, named “John”, may then write

NamedBaby myBoy = new NamedBaby( "John" , true );

and be surprised by the printout “New baby: Her name is null ”, which is explained by
the announcement being made before the subclass’s fields are initialized. This lack of crisp sepa-
ration between field initialization and the rest of the construction code, can even result in runtime
exceptions, e.g., ifNamedBaby.announce invokesname.length() .

C++ is not much better: The C++ equivalent of Figure 5.1 would print partial (albeit more
sensible) output, “New baby: ”. Also, C++ would produce a runtime error ifannounce() is
made abstract in classBaby .

This example motivates our distinction between three conceptual steps in an instance’s birth
process (later we shall argue that the separation between these is better served by factories):
(a) Creation, in which the object’s actual type is selected, memory is allocated and structured
by the mold; (b)Initialization, in which fields are set to their initial values; and (c)Setup, in which
the mill is executed.

These three steps correspond exactly to steps C1, C2 and C4 in the effects of a creation instruc-
tion !! x in EIFFEL [169, p.237]. The missing step, C3, is the attachment of the newly created
object to the reference variablex; however, in languages such asJAVA and C++ the invocation
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abstract class Baby {
public Baby() {

announce();
}

public void announce() {
System.out.print( "New baby: " );

}
}

class NamedBaby extends Baby {
String name;
boolean isBoy;

public NamedBaby(String name, boolean isBoy) {
this .name = name;
this .isBoy = isBoy;

}

public void announce() {
super .announce();
System.out.print(isBoy ? "His" : "Her" );
System.out.println( " name is " + name);

}
}

Figure 5.1: Interwoven initialization and setup inJAVA constructors

of a constructor is anexpressionrather than a statement, and can be performed without assign-
ing the result to a variable. (EIFFEL also supports the invocation of a creation procedure as an
expression [90, Sec. 8.20.18], in which case step C3 is absent.)

The initialization step is realized in C++ by what is called the initialization list (written just
after the constructor’s signature). InJAVA and C# it is expressed using initializer values (or
defaults) for fields, whereas the instance initializer block and the constructor bodies perform the
setup. InEIFFEL, it is the assignment of standard default values to fields. As the example shows,
however, initialization with default values is insufficient. Developers should be able to initialize all
fields, across all levels of inheritance (i.e., complete step (b)) before setup code is being executed
(step (c), the announcement in our example);initialization andsetupshould be unwoven.

We further note that none of these languages provides the developer with control over the
creationstep. Overloading thenew operator in C++ grants us control over memory allocation, but
not over the kind of object to be created, nor the decision if a new object has to be created at all.

We argue that good design of elaborate software systems often requires intervention in the
creation step. Indeed, there are a number of successful design patterns, includingABSTRACT

FACTORY, FACTORY METHOD, SINGLETON, andOBJECT POOL, which address precisely this
need. The control that these “creational patterns” grant the programmer over the creation step is
achieved by replacing constructor signatures from the forge facet with a different, statically-bound,
common method (e.g.,getInstance ).2

2Such methods are sometimes calledfactory methods. While serving a similar purpose, they are different than our
notion offactories.
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Unfortunately, in contrast with most other patterns, the creational patterns cannot be imple-
mented in object-oriented languages without revealing implementation details to the client: If
classT is implemented as aSINGLETON, then clients of this class cannot writenew T() and
expect the correct instance to be returned; rather, they must be aware of the nonstandard creation
mechanism, in violation of the uniform access principle. As a result, if a class evolves during de-
velopment so that the new version employs (e.g.) an instance pool, all clients must be updated to
use thegetInstance method rather than the constructors; the use of creational patterns cannot
be encapsulated as part of the class implementation.

Creational patterns often collide with inheritance. To enforce the use of aget Instance
method and prevent accidental direct access to the constructors, all constructors can be made
private , with the undesired implication that the class cannot be subclassed. The alternative
of defining the constructor asprotected is problematic inJAVA , since such constructors are
visible to all classes in the same package.

Worse still, since methodgetInstance must be shared, it cannot be overridden in sub-
classes: IfC ′ is a subclass ofC, then the expressionC ′.getInstance() is valid—but returns
an instance ofC! This happens becausegetInstance is technically part of the type, while
conceptually being part of the forge.

We shall see that factories enable a clear-cut separation between creation and initialization and
setup, and allow for proper encapsulation of the creation step.

5.4 Factories

ClassSTemplate in Figure 5.2 shows how theSINGLETON design pattern can be realized by
overridingnew with the factory defined in lines 4–8. This factory is invoked whenever the expres-

1class STemplate {
2 private static STemplate instance = null ;

4 public static new () {
5 if (instance == null )
6 instance = this ();
7 return instance;
8 }

10 STemplate() {
11 // setup code ...
12 }
13}

Figure 5.2: Using a factory to define a Singleton class

sionnew STemplate() is evaluated, in classSTemplate or any of its clients. Note that the
factory is declaredstatic , which stresses that it binds statically, and that (unlike constructors)
it has no implicitthis parameter. Examining the factory body we see that it always returns the
same instance of the class. Thus, clients need not be explicitly aware ofSTemplate being a
singleton, and will not be affected if this implementation decision is changed. (In the specific case
of the SINGLETON design pattern, clients can compare instances to realize that only one exists.
Other patterns, such asINSTANCE POOL, can be completely invisible to clients.)

A factory must either return a valid object of the class, or throw an exception. (Should the
factory’s return value benull , aNull Pointer Exception results.)
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Suppose thatC ′ is a subclass ofC. Then, a factory ofC can return an instance ofC ′.
This can be done by invoking any method which returns an instance ofC ′, including a factory
of C ′—e.g., by a statement such asreturn new C ′( · · · ) . If the factory however chooses to
create an instance of classC, then it should invoke the constructor; yet writingnew C( · · · ) (e.g.,
new STemplate() in the example) would recurse infinitely. Instead, the factory invokes the
class constructor directly with the expressionthis ( · · · ) (line 6 in the example).

We chose to overload the keywordthis , particularly, its use for invoking a constructor. No
ambiguity arises: In constructors, the function callthis ( · · · ) occurring in the first line can
substitute the mandated call tosuper with a call to a different constructor in the same class (as
in standardJAVA ). Such a call does not create an instance, nor does it return a value, and it must
appear only as the very first step in the constructor body. In a factory,this ( · · · ) stands for a
call to a constructor of the class. The call creates a new instance and returns a value; it may occur
multiple times (or not at all), and in any location inside the factory body. The factory can choose
to return the value generated by such a call. (In the case of theSTemplate class, the value is
cached to a static field, which is then returned.)

The constructor can only be called from a factory in the same class; any use ofnew C( · · · ) ,
either from outside classC or from inside it, will invoke a factory rather than a constructor.

While there are many different solutions to the specific issue of singletons, (e.g., declaring
an object—rather than a class—inSCALA [184], or using prototype-based languages, such as
CECIL [51]), the factory solution is not specific to singletons, and can be used for any creational
design pattern. More examples will be presented below.

As usual with overloading, a factory may have parameters, which are matched against the
actual parameters in the creation expression. A parameterized factory could be used for, e.g.,
implementing theFLYWEIGHT pattern: To do so, the factory returns, if possible, an existing object
from its pool, and only creates an instance if no such object exists.

Like constructors, factories are not inherited. Had classC ′ inherited a factorynew() from
its superclassC, then the expressionnew C ′() might yield an instance ofC, contrary to com-
mon sense. Thus, the problem ofC ′.getInstance() yielding an instance ofC, described in
Section 5.2, does not occur with factories.

In contrast, when factories are employed, the expressionnew C() canyield an instance ofC ′,
since a subclass is always substitutable for its superclass.

Factories also allow developers to separate the initialization and setup stages of object con-
struction. The mixup of Figure 5.1 is resolved by the factory based implementation in Figure 5.3,
in which the callnew NamedBaby( "John" , true ) yields the expected “New baby: His
name is John ” output. The implementation in the figure adheres to the simple rule that
field are initialized in constructors, and other setup is carried out by the factory. In particular, the
announcement of the birth is made in the factory ofNamedBaby (line 29).

5.4.1 Automatically Generated Factories

It’s supposed to be automatic, but
actually you have to push this button.

— John Brunner,Stand on Zanzibar

A definition of a factory with a certain signature hides the constructor with the same signature.
Such hidden constructors can only be invoked from the factory of a class, regardless of their
access level. Let us now deal with the dual situation, i.e., a constructor without a factory. Backward
compatibility of our extension is achieved by the following perspective: An expression of the form
new S( · · · ) is always implemented by a factory whose signature matches the actual parameters.
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1abstract class Baby {
2 public Baby() {
3 // No fields that require initialization
4 }

6 public void announce() {
7 System.out.print( "New baby: " );
8 }
9}

11class NamedBaby extends Baby {
12 String name;
13 boolean isBoy;

15 public NamedBaby(String name, boolean isBoy) {
16 // Initialization
17 this .name = name;
18 this .isBoy = isBoy;
19 }

21 public void announce() {
22 super .announce();
23 System.out.print(isBoy ? "His" : "Her" );
24 System.out.println( " name is " + name);
25 }

27 public new (String name, boolean isBoy) {
28 NamedBaby result = this (name, isBoy); // Construction
29 result.announce(); // Setup
30 return result;
31 }
32}

Figure 5.3: Re-implementation of Figure 5.1 using factories

This can be either a user-defined factory, or anautomatically generated factory(AGFa). The
automatic generation of factories is governed by:

The AGFa Rule: Let c be a constructor with a signatureσ in a non-abstract classS.
Then, either (a)S has an explicit factory with signatureσ, or (b) it has static AGFa
with signatureσ, which invokesc.

Figure 5.4 shows an example of the AGFa rule. The class defined in Figure 5.4(a) has a
factory with no parameters. It also has a two-parameters constructor, with no matching factory.
Figure 5.4(b) shows the AGFa that the compiler (internally) injects into the class.

Recall that in plainJAVA , instances of abstract classes cannot be created, even though such
classes have constructors. The following argument uses the AGFa rule to explain this:Instances
can only be created by anew expression, which must have a matching factory. However, by the
AGFarule, abstract classes in plainJAVA do not have factories.
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class Complex {
public static final Complex origin = new Complex(0,0);
public Complex( double x, double y) {

// instance setup ...
}
public static new () {

return origin;
}

}

(a) A class in which the zero-arguments factory returns a fixed instance

public static new ( double x, double y) {
return this (x,y);

}

(b) The factory added to the class by the AGFa rule

Figure 5.4: A class (a) with a constructor and its automatically-generated fac-
tory (b)

Conversely, if an abstract classSa doesdefine factories, then you can writenew Sa( · · · ) in
your code. Figure 5.5 shows an abstract class,ScrollBar , with a factory. This example is
modelled after the famous example [105, p.87] of theABSTRACT FACTORY design pattern. The
code in the figure improves on the original implementation of the design pattern, in that the client is
not aware that an abstract factory stands behind the scenes of the simple callnew ScrollBar() .
(As we shall see later, the internal implementation of the widget factory class itself can also be
improved with factories.)

public abstract class ScrollBar {
public static new () {

WidgetFactory f = WidgetFactory.currentFactory();
return f.CreateScrollBar(); // Select concrete subclass

}
// ... rest of the class omitted

}

Figure 5.5: An abstract class with a factory

As shown in Figure 5.6, interfaces may also have factories. The figure shows an interface,
DirectoryEntry , whose factory makes it possible to obtain an instance of either of two im-
plementing classes,Folder andFile , depending on the parameter value.

5.5 Better Decoupling with Factories

The use of factories in interfaces can eliminate coupling between client code and library code.
Consider, for example, theJAVA collection libraries. The standard library designers require, in
very strong words, that interface types (likeList andSet ) will be used for method arguments:

“ . . . it is of paramount importance that you declare the relevant parameter type to be
one of the collection interface types.Neveruse an implementation type.”

– [46, p.526]; emphasis in the original.
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public interface DirectoryEntry {
public static new (String name) {

if (FileSystem.isDirectory(name)) return new Folder(name);
return new File(name);

}
// ... rest of the interface omitted

}

Figure 5.6: An interface with a factory

Similar recommendations apply to return types, field types, etc., all in spirit of Canning et al.’s
original suggestions for separating the type and class notions using interfaces [47]. The coupling
of client code to concrete implementation is indeed reduced by following this recommendation.
But, such a coupling still remains, particularly at the point where a client is required to create an
object.

Interfaces with factories can eliminate this coupling. In the case of theList interface, clients
can generate instances of some default implementation by writing (say)new List() . The fac-
tory can choose the proper concrete implementation, possibly based on hints provided by the
client. Figure 5.7 provides an example factory that can be used by theList class inJAVA ’s col-
lections framework. Should new and improved implementations appear in future versions of the

public interface List {
/∗∗
∗ @param synch indicates if a thread−safe list is needed
∗ @param randomAccess indicates if O(1) element access is needed
∗/

public static new ( boolean synch, boolean randomAccess) {
if (synch) {

if (randomAccess) return new Vector();
return Collections.synchronizedList( new LinkedList());

}

// Else, synchronization is not needed.
if (randomAccess)

return new ArrayList();

return new LinkedList();
}
// ... rest of the interface omitted.

}

Figure 5.7: One possible factory for theList interface

JAVA class libraries, this factory can be upgraded, and all clients will immediately benefit from the
change. This solves thechange advertising dilemmafor new implementations of interfaces.

We would like to draw attention to the fact that following the recommendation of using in-
terfaces rather than classes as method parameters, may in some situationsincrease the burden
on clients rather than reducing it. Consider the learning effort of a user in search of a specific
service in a software library. Suppose that this service is provided by a methodm in an inter-
faceI. Then, beforem can be invoked, the user must search for all the different implementation
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of I, say classesC1, C2, C3, . . ., study them, and choose which of these to instantiate in order to
generate an instance ofI. Further, suppose thatm takes a parameter of type interfaceI ′. Then,
the user must also search for all implementations ofI ′, say classesC ′

1, C
′
2, C

′
3, . . ., study them all

and choose the one appropriate for instantiation prior to invoking methodm. If the constructor
of the chosen class expects a third interface parameterI ′′, then, the user must further search for
implementationsC ′′

1 , C ′′
2 , C ′′

3 , . . . of I ′′, etc.
A small example is methodSecurity.getProviders in theJAVA standard library taking

aMapas a parameter. In this parameter, the user can provide a set of selection criteria. Before the
method may be used, even for testing or experimentation, the programmer must create an object
representing such a test, and to do so, choose an implementation of theMap interface—but there
are no less than seventeen such implementations in version 1.5 of the JDK.

Another example is methodJPanel.setBorder() from the Swing GUI libraries, which
expects a parameter of theBorder interface. In order to use this method, the client must be
spend time in studying the different implementations of this class, only to realize that yet a third
class,BorderFactory , should be used to generate instances. With factories, the functionality
of BorderFactory can be embedded inBorder .

Searches for implementations of a given interface is usually not easy: implementations may be
done by various different vendors, the list may change over time, and the selection between these
may require a hefty learning effort. Interfaces (and abstract classes) with factories can therefore
simplify the adoption of new, unfamiliar classes. Sometimes such a search is inevitable, but in
many cases, it can be saved if the interface itself provides a reasonable selection of an implemen-
tation.

Writing a unit test code for a class whose methods take interface parameters is greatly sim-
plified if these interfaces give ready-made instantiations. It is even conceivable that interfaces
provide a stub implementation just for this purpose. For example, the standardJAVA interface
Runnable can provide a stub implementation (perhaps defined as an inner class) in which the
run() method does nothing.

5.6 Client-Side Factories

All examples so far defined factories in the same class on which the overload takes place. Factories
of this sort are calledsupplier-side factories. It is also possible to defineclient-side factories, as
demonstrated in Figure 5.8.

1class Bank {
2 public static new Account(Customer c) {
3 if (c.hasBadCreditHistory())
4 return new LimitedAccount(c); // a subclass of Account
5 return Account. new Account(c);
6 }
7 // ... rest of the class omitted
8}

Figure 5.8: A client-side factory forAccount s in classBank

Line 2 in the figure starts the definition of a factory. Unlike the previous examples, this defini-
tion specifies the returned type. The semantics is that the definition overloadsnew when used for
creatingAccount objects from within classBank . It is invoked in the evaluation of an expres-
sion of the formnew Account(c) (wherec is of typeCustomer or any of its subclasses) in
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this context. This factory chooses (lines 2–6) an appropriate kind ofAccount depending on the
particular business rules used by the enclosing class.

Unlike supplier-side factories, client-side factoriesare inherited by subclasses. There-
fore, the factory from Figure 5.8 will also be used for evaluating expressions of the form
new Account(c) in subclasses ofBank .

The client-side factory defined inBank can be used by other classes as well, by writing

Bank. new Account( · · · ) ,

or, after making a staticimport of classBank , by simply writing

new Account( · · · ) .

Figure 5.9 shows an implementation of theABSTRACT FACTORY pattern with static binding.
ClassesMotifWidgetFactory andPMWidgetFactory each overload thenew operator of
all the GUI widgets.

class MotifWidgetFactory {
public new ScrollBar() {

return new MotifScrollBar();
}

public new Window() {
return new MotifWindow();

}

// ... factories for other widget classes ...
}

class PMWidgetFactory {
public new ScrollBar() {

return new PMScrollBar();
}

public new Window() {
return new PMWindow();

}

// ... factories for other widget classes ...
}

Figure 5.9: Widget-factory classes defined using client-side factories

A client wishing to use Motif, may write

import static MotifWidgetFactory.* .

This may be changed later to

import static PMWidgetFactory.*

should the GUI library need replacing.
The full semantics of anew call can now be explained as follows: Whenever a class is used

in anew expression, its supplier-side factories enjoy an implicitimport static . A client-side
factory in scope can override this import.

The abstract widget factory example we have just described suffers from the problem that
switching from Motif to PM requires a change to the client’simport static statements. But
there may be many such statements, in many source files. The remedy is to simply define an empty
class,

class WidgetFactory extends PMWidgetFactory {}

and statically import it in all clients. This will direct all widget factory calls to
PMWidgetFactory . The GUI can now be globally replaced with a single change, specifically
replacingWidgetFactory ’s superclass.
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5.6.1 Dynamically Bound Factories

The aboveWidgetFactory can be thought of as a statically-bound implementation of theAB-
STRACT FACTORY pattern, in that the decision on the concrete implementation is made at compile
time. To make a dynamically-bound widget factory, we needdynamically-bound factories. These
are defined, as the name suggests, without thestatic keyword. Figure 5.10 shows how such
factories can be used in the classical implementation of theABSTRACT FACTORY design pattern.

public abstract class WidgetFactory {
public abstract new ScrollBar();
public abstract new Window();
// ... and other widgets.

private static WidgetFactory f;
public static new () {

if (f != null ) return f;
if (GUI.isMotif()) return f = new MotifFactory();
if (GUI.isPM()) return f = new PMFactory();
//... etc.

}
}

(a) The abstract widget factory class

class MotifWidgetFactory extends WidgetFactory {
public new ScrollBar() {

return new MotifScrollBar();
}
public new Window() {

return new MotifWindow();
}
// ...

}

class PMWidgetFactory extends WidgetFactory {
public new ScrollBar() {

return new PMScrollBar();
}
public new Window() {

return new PMWindow();
}
//...

}

(b) Two concrete widget factory subclasses

Figure 5.10: Using non-static factories to implement a dynamically bound ab-
stract factory class

Figure 5.10(a) shows the abstract factory, while Figure 5.10(b) shows two concrete implemen-
tations. The factories of the widgets are all non-static and obey a dynamic binding scheme.
Also worthy of note is the factory of this abstract class itself, which (while realizing theSINGLE-
TON design pattern) determines at runtime the correct GUI library.
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Figure 5.11 shows how dynamically-bound factories can be used to implement theFACTORY

METHOD pattern (also known asV IRTUAL CONSTRUCTOR). The code in this figure implements
the classic example by the Gang of Four [105, p.107] of an abstractApplication class, bound
to an abstractDocument class. Each concrete subclass ofApplication can bind itself to a
concrete subclass ofDocument , by overriding the dynamically-bound factories. The resulting

abstract class Application {
List<Document> docs;
protected abstract new Document();

public void newDocument() {
// Handles the File|New menu option
doc = new Document(); docs.add(doc); doc.open();

}
// ... rest of the class omitted

}

(a) The abstractApplication class

class MyApplication extends Application {
protected new Document() {

return new MyDocumentType(); // A concrete subtype
}
// ... rest of the class omitted

}

(b) One possible concrete subclass

Figure 5.11: Implementing patternFACTORY METHOD with dynamically bound
factories

code is very similar to the original Gang of Four example, except that thenewDocument method
uses ordinary construction syntax (implemented using our notion of a factory) rather than the
nonstandard “factory method” dictated by the pattern.

Syntactically, the invocation of a dynamically-bound factory defined in classC for objects of
classS is written asc. new S( · · · ) , wherec is an instance of classC. The prefix “c. ” can be
dropped for code inside classC (so it is replaced withthis ).

It is not a coincidence that this looks very much like theJAVA syntax for creating an instance
of a dynamic inner class:c. new I( · · · ) , wherec is an instance of the containing class (possibly
this ) andI is the inner class’s name. The constructor of a (non-static ) inner class inJAVA is
a method of the containing class, and not of the class it constructs—just like a client-side factory
is a member of the containing class, and not of its target class. In fact, Nystrom, Chong and My-
ers [181] have shown that if the concept of inner classes is extended (usingnested inheritance),
most of the need for theFACTORY METHOD design pattern disappears. But while nested inheri-
tance has many distinct advantages with regard to code modularity and the creation of extensible
software systems, it only solves the need for factory methods for classes defined inside the same
module as their client. Also, it does not remove the need for instance-management patterns like
INSTANCE POOL or FLYWEIGHT.
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5.7 Summary

Factories may be a minor perturbation to language syntax, but they are of benefit to langauge
designers and programmers alike. We implemented factories as aJAVA extension using the Poly-
glot [182] extensible compiler framework (v. 2.0a4). This took approximately two workdays of a
single programmer.

In our implementation, supplier-side factories (both explicit and AGFa) are realized as meth-
ods named$new$ in the container class. The return type of$new$ is the containing class itself.

Client-side factories are stored in the client, and are named$new$classname, whereclass-
name is the fully-qualified target class name, with every dot replaced by$dot$ . For
example, the factory forAccount s in classBank (Figure 5.8) is realized as a method
called $new$com$dot$bank$dot$Account (assumingAccount ’s fully qualified name
is com.bank.Account ). The return type of client-side factories is the target type (e.g.,
Account ).

Any use ofnew is replaced by the proper method invocation, wrapped in a test that ensures a
non-null value is returned (and throws an exception otherwise).

The addition of factories to interfaces is less straightforward, since interfaces inJAVA cannot
contain any concrete methods. Instead, our extension synthesizes anstatic inner class (called
$NewHolder$ ) for the interface, and places factories in this class.

The implementation generates bytecode that can be used on anyJAVA virtual machine. As
discussed in Section 5.4, the introduction of AGFas implies thatJAVA -with-factories is fully com-
patible with existingJAVA source code. However, the code generated by our compiler assumes that
all instantiated classes have been compiled using the same compiler, and thus have supplier-side
factories (either explicit or AGFa). If factories are integrated into theJAVA language, full back-
wards compatibility with existing, pre-compiled classes can be achieved by having the class-loader
(rather than the compiler itself) add any required AGFa to each class. This will work equally well
for old and newly-compiled classes.

Clearly, the notion of factories is not limited toJAVA alone. It is not so difficult to approximate
supplier-side—but not client-side—factories inSMALLTALK , by overriding thenew class method.
Adding factories toC# seems rather straightforward, but it might take some cunning to add them
to C++, since the language introduces two obstacles:

• First, C++’s intrinsic overloading of thenew operator, is focused on the memory allocation
problem rather than on instance generation. One possible solution is to introduce a new
keyword, such asfactory , to the language. Declarations forfactory new can then
exist alongside those foroperator new . Such definitions can include both supplier-side
factories (no explicit return type) and client-side ones (with a specific return type). Client
calls tonew will then be redirected to the factory, and should the factory decide to create a
new instance, thenew operator will be used for memory allocation (as before).

• The second obstacle is due to C++ value semantics. The compiler must know the space
requirements of class instances allocated e.g., on the stack, but this is not possible with
factories. A simple solution is that classes with factories are restricted to reference semantics
representation only.

TheEIFFEL language presents a different challenge for introducing factories. Unlike construc-
tors in C++ orJAVA , creation procedures inEIFFEL are named. The advantage of this approach is
that the distinction between the different kinds of objects that may be created is not by the kind of
arguments, but rather through a meaningful name.

In terms of syntax design, the problem is that we must find a way, other than a special name, to
distinguish between factory methods (which have no object to work on), and methods and creation
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procedures (which start their work with a system-supplied object.)
We propose to the integration of factories intoEIFFEL by introducing a new part to theEIF-

FEL class declaration, alongsidefeature s, create s, etc. The part is calledfactory , and it
may be included only in non-expanded types. FollowingEIFFEL’s accessibility rules, a class
may provide different factories to different client classes by qualifying thefactory part with a
type list. Supplier-side factories have the return type “like Current ”; any other return type
indicates a client-side factory.

A subclass may re-classify a creation procedure as a factory (or vice-versa) when overriding
it, and in particular, the default creation procedure,default_create (defined in the root class
ANY) may be changed to a factory by any class that so desires. Following the principle of uni-
form access, clients that include a creation instruction (or a creation expression) employ the exact
same syntax regardless of whether a creation procedure or a factory is being used. The syntax
!! x.make is used by clients to obtain an instance, regardless of whethermake is a creation
procedure or a factory. Interestingly, the distinct name for each factory and creation method im-
plies that this extension maintains backwards compatibility with existing code, without resorting
to automatically-generated factories (AGFas).

Figure 5.12 shows anEIFFEL version of the singleton class from Figure 5.2. This class re-

1 class
2 S_TEMPLATE

4 factory −− obtain an instance
5 default_create: like Current is
6 once
7 !! Result .instance
8 end

10 create { NONE} −− private instance creation mechanism
11 instance is
12 do
13 −− initialize fields, etc.
14 end

16 end −− class STEMPLATE

Figure 5.12: A singleton defined inEIFFEL using a factory

classifiesdefault_create as a factory, so clients can use the creation instruction!! x (for a
variablex of typeS_TEMPLATE) to obtain the shared instance.

As we can see from the figure (line 7), no special syntax is needed to create an instance from
inside the factory (the equivalent of the specialthis () call in theJAVA version): Since a class
may include both creation procedures and factories, each with distinct names, there is no risk of
undesired recursion. Whenever a new instance is required, the factory simply calls a (possibly
private) creation procedure.

In summary, it is easy to see how middleware applications using shakeins can benefit from
factories. Figure 5.13 is a variant of Figure 5.8, in which the client-side factory always applies the
Secure shakein to the selected type before generating an instance. Thus, anyAccount created
by a Bank (or a subclass thereof) will be aSecure d one. Should the developers desire that a
given shakeinS must be applied to all instances of some classc, then the supplier-side factory of
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class Bank {
public static new Account(Customer c) {

if (c.hasBadCreditHistory())
return new Secure<LimitedAccount>(c); // a subclass of Account

return Account. new Secure<Account>(c);
}
// ... rest of the class omitted

}

Figure 5.13: A client-side factory forAccount s in classBank which applies a
security shakein to all generated accounts

c can be made to return only instances ofS 〈c〉.
Both supplier- and client-side factories can choose the particulars of which shakeins to apply

based on configuration values set, e.g., in deployment descriptors. This completely alleviates the
need for home interfaces for EJBs, while allowing EJB clients to obtain instances as simply as in-
voking new. The mechanism also guarantees that no undesired instances of the “raw” class, with
no shakeins applied, are ever created in an uncontrolled manner. (In the standard EJB solution,
this can happen if a developer mistakenly invokesnew rather than using the home object.) Fac-
tories therefore do away with an additional level of complexity introduced by other middleware
frameworks.
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Chapter 6

Object Evolution

Away to Proteus! Ask that wondrous elf:
How one can come to be and change one’s self.

— Johann Wolfgang von Goethe,Faust,
Part II, Act II, Scene VI1

A frog may turn into a prince, if kissed. The modeling of such a phenomenon in the object-oriented
world is known as (dynamic)object reclassification. As indicated by the literature, starting at least
as early as 1993 [218], and as we shall reiterate here, the need for reclassification arises frequently
in the software world, and cases such as the frog and prince example are not rarities. To realize
reclassification, one may useSMALLTALK ’s “becomes: ” method [114, p. 246], a powerful and
popular programming mechanism. Yet, “becomes: ” is notoriously unsafe and difficult to use.

There are inherent difficulties in object reclassification which probably explain why only
a handful of mainstream programming languages offer support for this feature. Other than
SMALLTALK ’s “becomes: ”, we are aware of the following: early versions ofPYTHON [163]
which allowed assignments to theclass attribute. Such assignments were not types-safe,
and consequently forbidden in later versions of the language. Similarly, inPHP version 4 one
could dynamically add both data- and function- members to instances, an operation which can be
thought of as reclassification. Again, support for this dwindled in version 5 of the language.

State of the art research on object reclassification (see e.g., [77, 86, 87, 107–109, 201]) battles
with the challenge of producing a type-safe alternative tobecomes . In this chapter, we are
interested in the tradeoff between expressive power and type-safety offered by a particular kind
of reclassification, what we callobject evolution, by which dynamic changes to an object’s class
aremonotonic—an object may gain, but never lose, capabilities. Once an object evolves, it cannot
retract its steps and be reclassified into its previous class.

Evolution is not as general as reclassification, and may not allow changes as drastic as a frog
turning into a prince. Our main interest is not so much with the theoretical foundation of object
evolution, which previously received attention in the literature, but rather in the practical issues
raised by the introduction of evolution into current languages.

We argue that there are many applications of monotonic evolution in practical systems. The
monotonicity property makes it easier to maintain static type safety with object evolution than
in general object reclassification. Note that the monotonicity property may make evolution irre-
versible. This restriction is ameliorated by separating the notion of class from that of type, and
with the help of shakeins we find that object evolution can support repeated state changes, and
even undo changes, under certain limitations.

1English by George Madison Priest.
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We shall also see that object evolution requires less changes to the host object-oriented pro-
gramming language and collects a reduced performance toll, mostly because all descends in the
inheritance hierarchy are necessarily monotonic.

The contributions of this chapter include:

1. The Case for Object Evolution.We argue that object evolution is in line with object-oriented
thinking and accepted design paradigms. For example, theSTATE design pattern [105] is
naturally expressed with evolution. Object evolution also integrates well with other useful
programming techniques, such as lazy data structures.

We will explain why object evolution is thread-safe, and why this should make it easier to
integrate into existing systems.

2. Concrete Language Extension.The integration of evolution with other language mecha-
nisms did not receive much attention in the past. To make our proposal concrete, we studied
the issues of introducing evolution into theJAVA programming language. In doing so, we
noticed an interesting problem of proper initialization in the course of reclassification: The
object must maintain the state of existing fields, which may have changed after their initial-
ization, yet its newly acquired fields must also be properly initialized. The class invariants
of the new class must likewise be satisfied.

We presentevolversas a complementary mechanism to constructors, containing the addi-
tional initialization code that separates an object of one class from an object of another. Like
constructors, evolvers can accept parameters, indicating that an object cannot be evolved
into a new class without some additional required information.

Conversely, we also show that in many cases,default evolverscan be automatically derived
from the constructors of a class.

3. Chart of the Language Design Space.This chapter presents three independent flavors of
the object evolution mechanism, taggedI-Evolution, M-EvolutionandS-Evolution, relying
on inheritance, mixins and shakeins, respectively. In saying that the flavors are indepen-
dent we mean that a language designer can choose to implement any of the seven possible
combinations, ranging from choosing a single approach to integrating all three.

4. Analysis of Runtime Failures.Just as an object construction operation can fail (e.g., when
the constructor throws an exception), so can object evolution. We study and compare the
relative merits of the three approaches by the kinds of runtime failures they may generate.

5. Implementation Strategies.Finally, we turn to dealing with implementation. We outline
several alternatives, each appropriate for different usage scenarios. Empirical data about the
frequency and type of object evolution operations that are common in programs will dictate
the preferred implementation strategy.

Although in the sake of concreteness, object evolution is presented as an extension to theJAVA

programming language, nothing in the discussion binds the mechanism specifically toJAVA . Most
other statically-typed object-oriented languages, such asEIFFEL or C#, are just as applicable.

6.0.1 Three Approaches to Object Evolution

We will present three theoretical approaches to the concept of object evolution, each with its
unique power of expression and underlying metaphor. These approaches are not mutually exclu-
sive; all three, or any subset of thereof, can co-exist in the same programming language.
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The first approach, which we callI-Evolution, is based on standard inheritance. Here, an
object can evolve into any subclass of its own class. This change is necessarily monotonic, since
a subclass may onlyextendits base class. Evolution is expressed using the syntaxv → C(· · · ),
meaning the object referenced by variablev is evolved (using the→ operator) to an instance of
classC. The parenthesis will often be empty, i.e.,v → C(); however, the evolution process may
accept parameters.

The evolution targetC must be a subclass ofv’s type. The set of possible reclassification
targets is therefore defined by the inheritance tree. The similarity of this tree to taxonomy trees
used in biology to describe evolution inspired the process’s name.

The second approach,M-Evolution, is based on mixin inheritance [38]. With M-Evolution
an object can only evolve into a subclass defined usingmixins. Recall that given a classC and
a mixin M , the application ofM to C, denotedM 〈C〉, is a subclass ofC. ClassM 〈C〉 is
an ordinary class, and can therefore serve as the target of an I-Evolution operation. With M-
Evolution, however, the evolution target is selected—and possibly generated—at runtime, based
on the object’s actual type at the time of evolution. The M-Evolution operationv → M 〈v〉 (· · · )
selectsM 〈V 〉 as its target, whereV is v’s runtime type. Thus, an M-Evolution can be thought of
as an application of a mixin to an instance rather than to a class. Because a mixin can only extend
its operand, M-Evolution is also guaranteed to be monotonic.

Finally, S-Evolutionis limited to shakein inheritance. As explained in Chapter 2, shakeins are
a programming construct that, like mixins, generates a new class from a given class parameter.
Unlike mixins, a shakein does not generate a newtype. Given a shakeinS and a classC, the
shakein applicationS 〈C〉 represents a new class but not a new type; it is animplementation
class[72].

S-Evolution can be thought of as an application of a shakein to an instance rather than to
a class. Such an application, by definition, does not change the object’s type (in contrast to its
class); in particular, the shaked object cannot understand any new messages. S-Evolution is there-
fore trivially monotonic, and resembles instance-specific behavior facilities inSMALLTALK [24].
However, unlike instance-specific behavior, the behavior itself is described in an organized manner
(in the shakein’s definition) rather than relying on ad-hoc changes to an object’s message handlers.

A unique feature of S-Evolution is that it can be temporary, i.e., in certain circumstances,
the object may later re-evolve into a different shakein-based class,undoing(or “de-evolving”)
the effect of the first shakein. Whereas shakeins can be used as enhanced aspects, S-Evolution
introduces the possibility of using shakeins as dynamic aspects [148,190,192].

6.0.2 Evolution Failures

All three approaches presented above integrate with the static type system. Once an object has
evolved, it assumes a new class, and it will never be the case that an object receives a message it
cannot deal with.

However, in certain circumstances that cannot be statically determined, the evolution operation
itself might fail. Such cases are calledevolution failures. For example, the most trivial case of
evolution failure is when the reference to the object to be evolved happens to benull at runtime.

Thus, with regard to type safety, object evolution can be likened to a downcast operation: The
operation itself might fail, but once completed successfully, the reference or object can be safely
accessed using its newly-assumed class.

Each of the three approaches entails its own set of possible causes for evolution failure.
In the I-Evolution operationv → C(· · · ), the evolution targetC must be a subclass ofv’s

type. Herein lies a risk of evolution failure, since whileC can be verified to be a subclass ofv’s
statictype, we cannot verify in advance that it is also a subclass ofv’s dynamictype. For example,
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we may try to evolve an object of static typePet to typeDog, but if the object’s runtime type is
Cat (a different subclass ofPet ), this evolution attempt will fail.

The target of the M-Evolution operationv → M 〈v〉 (· · · ) is M 〈V 〉, whereV is v’s runtime
type. The operation’s target is therefore necessarily a subclass ofv’s dynamic type, avoiding the
risk presented by I-Evolution operations. The risk is further reduced by defining the concept of
idempotent mixins, i.e., mixins that can be repeatedly applied to a class with no adverse effect.
However, M-Evolution can still fail if mixinM cannot be applied toV for one of two reasons:
If V is afinal class, or if the application results in accidental overriding [8].

Finally, because it only offers trivial monotonicity, S-Evolution is the least susceptible to fail-
ure. Like M-Evolution, S-Evolution selects the target class based on the evolving object’s dynamic
type, thereby avoiding the risk faced by I-Evolution.

Unlike mixins, shakeins are immune from accidental overriding, because they can only over-
ride existing methods or introduceprivate ones. Thus, S-Evolution can only fail when a shakein
is applied to a an object whose dynamic type isfinal (assuming shakeins are implemented using
inheritance).

Chapter outline. Section 6.1 makes the case for object evolution using four motivating exam-
ples, including theSTATE design pattern, a compiler implementation, and a lazy data structure.
Section 6.2 presents the concept of object evolution in greater detail, and explains where a sim-
ple evolution operation might fail. Sections 6.3, 6.4 and 6.5 present the I-, M-, and S-Evolution
variants, respectively. Possible implementation strategies are discussed in Section 6.6. Section 6.7
compares object evolution to other reclassification approaches, and Section 6.8 concludes.

6.1 The Case for Object Evolution

As early as 1993, Taivalsaari [218] argued that design often needs objects that change their be-
havior at runtime. (Taivalsaari’s own proposed solution,modes, can be nicely implemented us-
ing S-Evolution.) This need for reclassification motivated much subsequent research, includ-
ing [52,72,76,77,86,87,107–109,201].

An important demonstration of this need is provided by the programming languagee [140],
manufactured and sold by Cadence, and used widely in the hardware verification industry. What is
calledwhen-inheritance[134] in e is in reality a mechanism by which an object reclassifies itself.
When-inheritance is similar in fact to S-Evolution.

This section emphasizes the case for object evolution showing several cases where object
evolution can be used to improve upon program design. Section 6.1.1 explains how theSTATE

design pattern maps naturally to evolution. In Section 6.1.2 we show how program design of lazy
data structures can benefit from evolution. Two examples are used there for concreteness: The
DOM representation of HTML data structures, and the evolution of the Abstract Syntax Tree in
the different stages of the compilation process.

Finally, Section 6.1.4 demonstrates how evolution can be used to slightly ameliorate imple-
mentation issues in face of the recalcitrant co-variance problem [49].

6.1.1 Implementing theSTATE Design Pattern

In their presentation of theSTATE design pattern, the Gang of Four use a TCP connection class as
an example [105, p.305]. Figure 6.1 shows the class structure realizing this example.

The connection object is required to respond differently to messages (such asopen ) based on
its current state, which can be either of “established”, “listen” (active) and “closed”. Rather than
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TCPConnection
open()
close()
acknowledge()

TCPState
open()
close()
acknowledge()

�����

TCPEstablished
open()
close()
acknowledge()

TCPListen
open()
close()
acknowledge()

TCPClosed
open()
close()
acknowledge()

�����
�
�����	


Figure 6.1: The state-changingTCPConnec tion class (from [105, p.305])

represent the state as anint data member (or anenum), the design pattern suggests representation
using a data members of a dedicatedstatetypeS, to which all requests are delegated.

The abstract state class (TCPState in this example) has a concrete subclass for each possible
state. Each such subclass responds differently to messages; for example, theclose message
changes the object’s state (to “closed”) if it is in either the “established” or “listen” states, but
throws an exception if it is already in the “closed” state.

To change its state, the object simply replaces the instance to which the state variables refers.
The intent of the pattern is to “[allow] an object to alter its behavior when its internal state

changes.The object will appear to change its class” [105, p.305; emphasis added]. But, as this
description suggests, the same effect can be better achieved by literally allowing the object to
change its class at runtime.

Figure 6.2 outlines the code for an implementation of the sameTCPConnec tion class,
which relies on object evolution. Here, the state-changing operations use object evolution
(lines 6, 10 and 22) to change the object’s state by advancing its class. Since evolution is transpar-
ent to aliasing, any reference to the connection will now use the newly-classified object, and thus
any method invocation will be affected by the new state.

Several benefits of the approach should be immediately apparent:

• Fewer classes. Whereas theSTATE design pattern solves this particular problem using
five classes (a wrapper class, an abstract state class, and three concrete state classes), the
evolution-based solution requires only three (one class per state).

• No code duplication. In theSTATE pattern, we find that the state class,TCPState , copies
the interface of the wrapper class. Such fragile code duplication is not needed with object
evolution.

• Greater efficiency. The code in Figure 6.2 does away with the need to delegate every in-
coming message from the wrapper class to the state object, thereby improving performance
(cf. the implementation ofopen in Figure 6.1). It also does away with thestate data
member, thus reducing memory requirements.

Section 6.3.2 discusses the limitations of this solution. A better solution, using shakeins and
state-groups, is presented in Section 6.5.1.

6.1.2 Lazy Data Structures

Since object evolution moves objects down the inheritance tree, it can be used to evolve instances
of general, top-level classes into more specific sub-classes. Such changes can be useful as more
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1 public class TCPConnection {
2 // This class represents the initial state, ‘‘listen’’.

4 public void open() {
5 // ... establish the connection ...
6 this →TCPConnectionEstablished();
7 }

9 public void close() {
10 this →TCPConnectionClosed();
11 }

13 public void acknowledge() { ... }
14 }

16 class TCPConnectionEstablished extends TCPConnection {
17 public void open() {
18 // ... ignore
19 }

21 public void close() {
22 this →TCPConnectionClosed();
23 }

25 public void acknowledge() { ... }
26 }

28 class TCPConnectionClosed extends TCPConnectionEstablished {
29 public void open() {
30 throw new IllegalStateException();
31 }

33 public void close() {
34 throw new IllegalStateException();
35 }

37 public void acknowledge() { ... }
38 }

Figure 6.2: ImplementingTCPConnec tion and its state-changes using object
evolution

information about the object is obtained (see example in Section 6.1.3 below), or for lazy evalua-
tion of data structures. In the latter case, nodes in the data structure are first represented as general
“node” objects, to be replaced by specific nodes on a per-need basis.

Consider, for example, the hierarchical in-memory representation of HTML files (or files of
other markup languages, including XML), and in particular, DOM (Document Object Module)
trees [136], a common such representation.

Figure 6.3(a) shows a simple HTML file. In Figure 6.3(b) we see the DOM representation of
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1<html >
2 <head >
3 <title >Welcome!</ title >
4 </ head >
5 <body >
6 <h1>Welcome to this page.</ h1>
7 <p>As you can see, it contains
8 nothing < i >meaningful</ i >.</ p>
9 </ body >

10</ html >

(a) An HTML document
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(b) The document’s DOM tree

Figure 6.3: A sample HTML document and its Document Object Model (DOM)
tree. Nodes in the tree are instances of classes shown in the hierarchy
of Figure 6.4

this file. We see that every opening tag is represented as a tree node, while the HTML content that
occurs from this tag to its matching closing tag is represented as the subtree rooted at this node. A
sequence of plain text, with no tags, is represented as a leaf node of typeText .

For example, the HTML fragment

<i >meaningful</ i >

in line 8 of Figure 6.3(a) is represented as a node of typeItalics with a subnode of typeText .
Figure 6.4 is a UML class diagram for the classes used in Figure 6.3(b). We see that abstract

classNode is at the root of the hierarchy, classText is a final class, and that different classes
offer different services.

Node
appendChild()
getChildNodes()

Text
getText()
setText()

Document
...

Element
getName()
getAttributes()

Head
...

Body
...

Paragraph
......

Figure 6.4: Classes used for representing DOM trees

Since programs often end up using only part of the tree, a common optimization technique is
lazy evaluation, by which a given object represents an entire subtree, to be expanded on a per-need
basis.

In our example, lazy evaluation means that classNode is not abstract. Instances ofNode
denote portions of the HTML which were not parsed yet.

137



��������

��	
���

��
���� ��	
���

����

��	
���

Figure 6.5: A possible stage in the lazy creation of the tree from Figure 6.3(b).
Nodes labeledn1, n2 andn3 were not yet expanded

Figure 6.5 shows a possible intermediate state of the tree from Figure 6.3(b). The left-
hand child of the root node, markedn1 in the figure, represents the subtree contained in the
<head >. . .</ head > tag pair. Should the program code delve into this subtree, this node must
be expanded, with new nodes created to represent its children.

In a lazy implementation of a DOM parser which does not use object-evolution, the expansion
step must either (a) replace the node objectn1 with a specific node (i.e., create a new object and
discard the old one), or else, (b) change the state of this object, so that it now represents a specific
node.

The first solution requires that the parser must not allow references to noden1 to leak, since
the existing object must be replaced with a new one, and the old one must cease to exist. This
complicates the tree implementation, and in particular requires an expansion of the subtree when-
evern1 is requested by any client, even if that client will not eventually access any child ofn1.
(Things are further complicated in other data structures, such as directed graphs, where there are
multiple references to the object.)

The second solution implies that theNode class must have two operational states, pre- and
post-expansion. After the expansion, it must be able to act as any of its subclasses; in this ex-
ample,n1 must be able to act as an instance of classHead after its expansion, whereasn2 must
be able to act as an instance ofPara graph andn3 asText . The STATE pattern can be used
here: maintain a field of typeNode in each un-expanded node (e.g.,n1), and, upon expansion,
assign a new instance of a specific subclass (e.g.,Head) to this field. Any message received by the
node will now be delegated to the more specificNode-typed field. An implementation of a lazy
DOM tree with theSTATE design pattern is inefficient, since it requires delegation. Such an imple-
mentation is also cumbersome, complicating both the design and the implementation of classes:
Node’s API must include the union of all methods found in all subclasses, and some of these
methods might fail at runtime (e.g., the methodget Text from classText must be processed in
the expandedn3, but rejected by the expandedn1 andn2).

Now consider the object evolution-based solution. Whenever the subtree represented by ob-
ject n1 must be expanded, we canevolvethis object from its current class (Node) to any of its
subclasses, and in particularHead. The evolution operationn1→Head( · · · ) affects the object
itself, so all references to it are immediately affected; there is no need to track and update each
reference explicitly. The object’s new class is a subclass of its old, so that the object can still
accept and process any message it could previously accept; and it can now also accept and process
messages added by the interface of its specific new class.

The object evolution-based solution requires no delegation, and no new object is introduced
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into the system. There is also no need to artificially inflate the interface of the superclassNode,
and type safety is maintained; e.g., if aNode is evolved into aHead, it has noget Text method,
and any attempt to use such a method will fail at compile-time.

6.1.3 Representing Knowledge Refinement

An important special case of lazy data structures are systems in which knowledge increases over
time, and the increase in knowledge allows us to replace a general class with a specific one.
To this end, object-oriented class hierarchies are often used, where top-level classes represent
abstract notions, while classes deeper in the inheritance hierarchy represent more and more specific
versions of these notions.

As a concrete example, consider the classes used to represent the abstract syntax tree (AST)
data structure in a compiler implementation. A top-level class,Method In vo ca tion , can be
used to represent the general notion of an invocation expression, whereas its subclasses rep-
resent specific invocation types, e.g.,Sta tic Method In vo ca tion for static method calls,
Dynamic Method In vo ca tion for ordinary calls,In ter face Method In vo ca tion , etc.
Each of these subclasses is a specific,refinedversion of the superclass.

In many compiler designs, the front-end (parser) generates an abstract syntax tree from the
program source code; the back-end module then processes this tree. Often, the parser does not
have the knowledge required for classifying a given node in the AST at its most refined represen-
tation level. For example, given the source fragment “x.m() ” in a JAVA program, the parser will
generate aMethod In vo ca tion node in the tree. The back-end will then replace this node with
a more specific node, such asIn ter face Method In vo ca tion , based on data obtained from
the symbol table regardingx ’s type and the declaration of methodmin that type. The change is a
refinementbased on gathered knowledge.

Just as with lazy data structures, a refinement entails either (a) the creation of a new node object
to replace the old one, or (b) representing all possible options in the top-level class (Method In -
vo ca tion in this example). As in the case of DOM tree nodes, the first option implies that the
AST data structure must prevent the reference to the raw type from leaking; all references must
be meticulously tracked, and replaced when the object is refined. The second option implies that
the top-level class must contain knowledge about all possible refinement options. This contradicts
modular design and complicates future expansions.

With object evolution, refinement is represented as the object sliding down the inheritance
tree to a state that represents our new, refined knowledge about it. All references are immediately
updated, while the program design remains completely modular.

6.1.4 Supporting Data Covariance

Subclasses often use fields defined in superclasses in a more specialized manner than the fields’
original definition. For example, consider the two linked list implementations in Figure 6.6. Class
Link edList in the figure is a unidirectional linked list; each node is an instance of the inner
classNode, which contains a link to the data item as well as anext reference. The subclass
Bi di Link edList is a bidirectional linked list. Here, each node is an instance ofBidiNode ,
a subclass ofNode which adds aprev reference. The fieldshead andtail , defined asNode
fields in Link edList , arecovariant fields, since inBi di Link edList they always hold an
instance ofBidiNode .

The problem lies in methodappend . We see thatLink edList . append creates an in-
stance ofNode to hold the new list item, and chains this node into the list. Ideally,Bi di Link -
edList . append should be a refinement2 of its inherited version, only adding code for manag-

2“Refinement” here refers to method refinement [44, Ch.11].
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ing the back-linking of nodes. However, in standardJAVA , this is not possible, because the nodes
in Bi di Link edList must be created asBidiNode instances. The method must therefore be
overridden and its code duplicated.

Existing solutions to this problem include theFACTORY METHOD design pattern [105], family
polymorphism [94], simultaneous instantiation of templates [215], nested inheritance [181], and
dynamic factories [64]. Object evolution presents another possible solution.

1class LinkedList {
2 // Nested class for nodes
3 static class Node {
4 Node next = null ;
5 Object data;

7 Node(Object obj) {
8 data = obj;
9 }

10 }

12 protected Node head = null ;
13 protected Node tail = null ;

15 void append(Object obj) {
16 Node n = new Node(obj);
17 if (head == null ) {
18 head = tail = n;
19 return ;
20 }
21 tail.next = n;
22 tail = n;
23 }

25 // ... rest of the class not shown
26}

27class BidiLinkedList
28 extends LinkedList {
29 static class BidiNode
30 extends LinkedList.Node {
31 BidiNode prev = null ;

33 BidiNode(Object obj) {
34 super (obj);
35 }

37 // ... rest of the class not shown
38 }

40 void append(Object obj) {
41 BidiNode oldTail =
42 (BidiNode)tail;
43 super .append(obj);
44 // tail was constructed by super.append
45 // as a simple Node; evolve it:
46 tail →BidiNode();
47 tail.prev = oldTail;
48 }

50 // ... rest of the class not shown
51}

Figure 6.6: Two linked list implementations. ClassLinkedList (left) uses
vanilla JAVA ; the bi-directional linked-list (right) uses evolution for
covariance in theappend method (lines 40–48). This allows the in-
heritedappend to be refined rather than replaced

Figure 6.6 shows how, using object evolution,Bi di Link edList ’s version ofappend can
effectively reuse the inherited code without having to duplicate it. The gist of the implementation
is in line 46, which uses object evolution to evolve the object created by the method’s precursor
(called in line 43). Finally, the node’s back-linkprev is set (line 47).

6.2 Object Evolution

An object evolution operation replaces, at runtime, the type of an object with the type of a selected
subclass. As the target type is always a subclass of the current type, the set of class members is
either unchanged or enlarged, i.e., the change is monotonic. Since no member is removed by the
operation, we have a guarantee thatany message understood by the object prior to the evolution
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operation is understood after the operation as well, thereby ensuring type safety after the evolution
occurred.

The action of object evolution is executed on a particular reference to the object, but it affects
the object itself, not the specific reference used to express it. Any reference to the object, including
fields, local variables (or parameters) of the currently executing code, local variables of methods
up the call stack, and local variables in the call stacks of other threads now reference the evolved
object. Object evolution is therefore transparent to aliasing.

Evolution is written using the syntaxv → C(· · · ), meaning the object referenced by variablev
is evolved (using the→ operator) to an instance of classC. The→ operator is written in standard
ASCII as “-> ”. The parenthesis will often be empty, i.e.,v → C(); however, the evolution process
may accept parameters, as described below.

For example, consider the lazy tree evaluation scenario discussed in the introduction, and in
particular the class hierarchy presented in Figure 6.4. Given the variable definition and initializa-
tions

Node n1 = new Node( · · · );
Node alias1 = n1;

we can now evolven1 into any subclass ofNode; for example, the statement

n1→Head();

will evolve the object referenced by bothn1 andalias1 from an instance of classNode to an
instance of its indirect subclassHead.

While we have stated above that the evolution operation affects the object, rather than the
specific reference used to express it, it does have an impact on that reference: Following the
evolution operationv → C(· · · ), within the same innermost block of code,v’s static type isC, a
subclass of its current static type.

In our example, following the evolution statement above,n1 ’s static type isHead. Operations
defined in classHead, or its superclassElement , can therefore be applied to it, as in

Attributes attr = n1.getAttributes();

However, the same method cannot be applied toalias1 , whose static type remained unchanged.
To apply a newly-acquired operation to an alias, it can be downcast into the object’s new type; for
example,

Attributes attr = (Head)alias1.getAttributes();

is valid.
The change of static type for the evolution reference lasts only until the end of the current block

of code. The code fragment in Figure 6.7 provides an example: Following the evolution operation
in line 6, the method invocations in lines 7 and 9 will compile and succeed at runtime, whereas
the invocation in line 8 will fail to compile, as discussed above. The invocations in lines 5 and 12,
despite seeming identical to that in line 7, will not compile; the first, because it appears prior to the
evolution operation, and the second because it resides outside of the operation’s containing scope.

Finally, the invocation in line 13 uses a downcast; it will compile successfully, but (as with
any downcast operation) might fail at runtime, depending on the result of the condition in line 4.
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1 Node n = new Node( · · · );
2 Node alias = n;

4 if (someCondition()) {
5 n.getAttributes(); // Compile-time error
6 n→Head();
7 n.getAttributes(); // Will succeed
8 alias.getAttributes(); // Compile-time error
9 (Head)alias.getAttributes(); // Will succeed

10 }

12 n.getAttributes(); // Compile-time error
13 (Head)n.getAttributes(); // Downcast might fail at runtime

Figure 6.7: An example of the effect of evolution on references to the object

6.2.1 Evolvers: Maintaining Class Invariants at Evolution

The object evolution operation takes an instance of one class and mutates it into an instance of
another. Yet simply adding new fields and methods is not sufficient. Consider an objectv of
type C0 that undergoes an evolution process,v → C(· · · ). The object state, which initially
satisfies the class invariants [169, Sec. 11.8] ofC0, must now satisfyC ’s invariants.3 (Note that
while JAVA classes do not have invariants specified explicitly in code, they almost always have
implicit conceptualinvariants, often made explicit in the documentation.)

Standard objects of classC go through an orderly construction process, which ensures that
class invariants are satisfied once the constructor execution completes. In particular, the construc-
tor begins by invoking an inherited constructor (using the keywordsuper in JAVA 4); after the
inherited constructor returns, the invariants of the superclassC0 are satisfied, and the rest of the
constructor body must ensure that the additional invariants introduced inC are also satisfied. But
objectv had only gone through theC0 construction process. We therefore conclude that object
evolution must allow the mutating object to execute any required code in order to meet the invari-
ants of its target class.

To this end, we defineevolvers, which are constructor-like class members executed upon evo-
lution. Syntactically, an evolver for classC is named→C (whereas a constructor is namedC). For
example, an evolver defined in classHead must be called→Head. Like constructors, evolvers
have no return type. Also like constructors, evolvers can be overloaded, and a single class may
contain multiple evolvers. The parameters(· · · ) passed to the evolution operationv → C(· · · )
dictate which evolver will be used.

Unlike constructors, evolvers do not begin by calling an inherited version. When the evolver
begins its execution, the current object (this ) is an instance of the classC, which does not yet
satisfy its class invariants; it only satisfies the invariants of its superclassC0. This is similar to
the state of the object in the constructor, right after the call tosuper ( · · · ) is completed. It is
therefore the evolver’s role to initialize the newly acquired fields, possibly based on the values of
the inherited fields, so that all invariants are satisfied.

For a concrete example, consider Figure 6.8, showing an implementation of classHead which
contains a fieldtitle of typeString .

3The subclass invariants are always additions to those of the superclass; see theinvariant inheritance rule, [169,
p. 465].

4Or the keywordthis , which delegates to a different constructor in the same class. Still, at the end of the
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1 class Head extends Entity {
2 private String title;

4 public Head() { // Constructor
5 super (); // Call superclass constructor (could also be implicit)
6 initializeTitle();
7 }

9 public →Head() { // Evolver
10 initializeTitle();
11 }

13 private void initializeTitle() {
14 // Parse the node’s content and settitle accordingly
15 Node titleElement = findSubElementByName( "title" );
16 title = titleElement.getTextContent();
17 }

19 // ... rest of the class not shown
20 }

Figure 6.8: A class with an explicit evolver

The implicit invariant of this class is that fieldtitle must benull if no title was specified
in the<head > part of the HTML file, or else it must be set to the specified title value.

To preserve this invariant, both the constructor (lines 4–7) and the evolver (lines 9–11) use the
private methodinitialize Title to handle the initialization of fieldtitle . Section 6.2.1
below shows how such code duplication is avoided when default evolvers are used.

The body of an evolver could be different from that of the constructor. In particular, the
constructor can make certain assumptions about the state of fields inherited from the superclass;
it knows for certain that the superclass was only just constructed itself. An evolver, however, can
execute long after the superclass instance was created, and the state of the inherited fields can
vary from what it was after construction. The only valid assumption for the evolver is that the
superclass fields maintain the superclass’s class invariants.

For an example of a complex evolver, recall theLink edList andBi di Link edList ex-
amples from Figure 6.6. The class invariants ofLink edList are that (a) fieldhead points to
the first node; (b) each node’snext points to the next node; and finally (c) the fieldtail points
to the last node. InBi di Link edList , the following invariants are added: (d) each node must
be an instance ofBi di Node, and (e) each node’sprev points to the previous node, if any.

For an empty list, the extra invariants presented byBi di Link edList hold trivially. Thus,
the constructor ofBi di Link edList has to do nothing but call the inherited constructor (and
indeed, the default constructor is used). The evolver, on the other hand, might have to operate
on an instance ofLink edList that is already populated. It must therefore evolve each existing
node to aBi di Node and correctly update itsprev link.

The evolver presented in Figure 6.9 satisfies invariants (d) and (e) by iterating over the list
(lines 4–9), evolving eachNode instance to aBi di Node and properly setting itsprev field.

delegation chain there must reside a constructor that begins with a call tosuper ( · · · ) .
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1 public →BidiLinkedList() {
2 if (head == null ) return ;
3 head→BidiNode();
4 BidiNode current = head;
5 while (current.next != null ) {
6 current.next →BidiNode();
7 current.next.prev = current;
8 current = current.next;
9 }

10 }

Figure 6.9: An evolver forBi di Link edList (from Figure 6.6)

Default Evolvers

Classes inJAVA that define no constructor obtain a default constructor, generated by the compiler;
this constructor merely invokessuper () . It is an error to define a class with no constructor if its
superclass has no constructor that accepts zero parameters (i.e., if the default constructor cannot
call super () ).

In a similar manner, classes that define no evolver obtain one or moredefault evolvers. For
every constructor that begins with a parameter-less call tosuper () , (directly or, by a chain of
this ( · · · ) calls, indirectly), a default evolver is generated. Each default evolver accepts the same
parameters as the constructor that triggered its synthesis, and shares the same body, except the call
to super () . The visibility level (private , public , etc.) of a default evolver is identical to
that of the constructor that inspired its synthesis.

Default evolvers makes it possible to remove lines 9–11 (the evolver definition) from Fig-
ure 6.8; an identical default evolver would be automatically generated. This also means that, in
the same figure, thetitle initialization code could be inlined as part of the constructor itself,
rather than presented as a private method. Figure 6.10 shows the resulting definition ofHead.

1 class Head extends Entity {
2 private String title;

4 public Head() { // Constructor
5 super (); // Call superclass constructor (could also be implicit)
6 // The following lines also serve as the default evolver→Head() :

8 // Parse the node’s content and settitle accordingly:
9 Node titleElement = findSubElementByName( "title" );

10 title = titleElement.getTextContent();
11 }

13 // ... rest of the class not shown
14 }

Figure 6.10: ClassHead (Figure 6.8) rewritten using an implicit evolver

If no default evolvers can be generated (because all constructors callsuper ( · · · ) with one
or more parameters), then the class must define explicit evolvers. ClassBi di Node in Figure 6.6
provides an example: it requires an empty evolver, but that evolver is not optional.
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Evolution Steps

In the DOM tree example, classHead extends classEntity , which extendsNode, which in
turn extendsObject (Figure 6.4). Therefore, whenever a new instance ofHead is created, the
constructor first invokes the constructor ofEntity , which first invokes that ofNode, etc. We
have that the construction process always begins at the topmost level (Object ) and progresses
down in the inheritance tree towards the actual type (e.g.,Head), with each step initializing its
own fields and ensuring that its own invariants are maintained.

When an object is evolved, some nonempty prefix of this initialization chain had already oc-
curred (at the very least, theObject constructor was executed). The evolution process must now
ensure that the remaining tail is executed. Therefore, given the inheritance chainCn ≺ Cn−1 ≺
. . . ≺ C1 ≺ C0, when objectv is evolved from classC0 to classCn, it is not only the evolver
of Cn that executes; the evolver of every class residing between the two in the inheritance tree
runs first:→C1, followed by→C2, etc. These areimplicit evolution steps. Becausev’s position in
the inheritance chain (its dynamic type) is known only at runtime, the required implicit evolution
steps are also known only at runtime. Only the final, explicitly named evolver→Cn is guaranteed
to take place when an object is evolved to typeCn.

For example, when an instance ofNode is evolved into an instance ofHead, the evolver
→Entity runs first (an implicit step), followed by→Head. This completes the initialization
chain for a proper instance ofHead.

We have seen that the evolution step might accept parameters. When the statement

v → Cn(p1, . . . , pk)

is executed (assumingv’s current type isC0), the parametersp1, . . . , pk are passed to the
evolver→Cn. For other evolvers in the chain betweenC0 andCn, a parameter-less evolver is
used.

If an interim step in the evolution chain,→Ci for somei ∈ {1 . . . n − 1}, has no evolver
that accepts zero parameters, the parameter-requiring steps cannot be implicit, andv may not be
directly evolved toCn. It must first be evolved to the interim stepCi, passing parameter(s) to one
of Ci’s evolvers; only then can it be evolved toCn. If there are multiple such parameter-requiring
steps in the chain betweenC0 andCn, then multiple explicit steps must be used.

Consider for example the trio of classes defined in Figure 6.11.
Given the variable declaration and initialization

A v = new A(0); ,

the evolution statementv→C(2) will fail (at compile time), sincev must first be evolved into
an instance ofB before it can become an instance ofC, and this interim stage requires its own
parameter. We must therefore use two explicit stages, as in

v→B(1); // v’s static type is nowB
v→C(2);

If we know v ’s dynamic type to beB, we can advise the compiler by using a downcast operator,
writing ((B)v) →C(2) . This will compile successfully, but (like all downcast operations), the
downcast attempt might fail at runtime.

6.2.2 Whenthis Evolves

Special attention must be paid to the case in which the current object,this , is evolved. This can
happen by an explicit statement,this →C(· · · ); by evolving an alias ofthis ; or by invoking
some other method that takes either of these steps.
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1 class A {
2 int a;
3 public A( int a) {
4 this .a = a;
5 }
6 }

8 class B extends A {
9 int b;

10 public B( int a, int b) {
11 super (a);
12 this .b = b;
13 }
14 public →B( int b) {
15 this .b = b;
16 }
17 }

18 class C extends B {
19 int c;
20 public C( int a, int b, int c) {
21 super (a, b);
22 this .c = c;
23 }
24 public →C( int c) {
25 // An object of typeA cannot use this evolver
26 // directly, since an argument is required for
27 // the implicit step→B. An object of type
28 // B can use this evolver without a problem.

30 this .c = c;
31 }
32 }

Figure 6.11: An inheritance chain where each step requires an additional con-
struction/evolution argument

After this is evolved, it could happen that it now has a new implementation of the currently-
running method. For example, consider classesA andB from Figure 6.12.

1public class A {
2 public void foo() {
3 System.out.print( "A.foo1;" );
4 this →B();
5 System.out.print( "A.foo2;" );
6 bar();
7 baz();
8 }

10 public void bar() {
11 System.out.print( "A.bar;" );
12 }

14 private void baz() {
15 System.out.print( "A.baz" );
16 }
17}

18public class B {
19 public void foo() {
20 System.out.print( "B.foo;" );
21 }

23 public void bar() {
24 System.out.print( "B.bar;" );
25 }

27 private void baz() {
28 // No overriding−− private method
29 System.out.print( "B.baz" );
30 }
31}

Figure 6.12: Code that evolvesthis

When methodfoo of classA is executed, the current object is evolved (line 4) to classB, which
overridesfoo . Following the evolution, theA version offoo continues, despite the overriding.

When foo invokesbar (line 6), this ’s new type causes the new version ofbar , defined
in B, to execute. Yet whenfoo invokesbaz (line 7), it is A’s version ofbaz that is executed,
sincebaz is aprivate (hence statically bound) method. The invocation ofA.foo() therefore
generates the output “A.foo1; A.foo2; B.bar; A.baz ”.
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6.2.3 Evolution Failures

Certain runtime circumstances can prevent an object evolution operation from completing suc-
cessfully. Each of the three approaches presented in this work is susceptible to failure for different
reasons, detailed in the appropriate sections below. The current section presents two possible
causes for failure that are shared by all three approaches.

First, the evolution operationv → C will fail if v is null at the time of execution. As with
similar cases inJAVA , the result is aNullPointerException being thrown. Such failures
can be avoided using simple tests prior to the evolution operation, or with language extensions for
non-null types [95,170].

Second, the evolution operation can fail if the evolver throws an exception (directly or indi-
rectly). When a constructor inJAVA throws an exception, the object creation process is aborted,
and no object is returned by thenew operator. Similarly, when an evolver throws an exception, the
object evolution process is aborted, and the object retains its original type. Any side-effects caused
during the evolution (e.g., output, the creation of additional objects, etc.) cannot be undone, just
like the side-effects of a constructor that eventually failed by throwing an exception.

If the evolution required implicit steps, then steps that were completed prior to the throwing of
the exception cannot be retracted. This limitation stems from the interim evolvers’ ability to pass
references to the current object, in its new (interim) type, to third parties. Thus, if an attempt is
made to evolve an instance ofNode to an instance ofHead, and the evolver→Head() throws
an exception after the implicit interim evolver→Entity() was successfully completed, then the
object remains an instance ofEntity .

Like any code member inJAVA , evolvers must obey the catch-or-declare principle, i.e., their
signature must include athrows part specifying which checked exceptions might be caused by
their execution.

It is possible to prevent evolution into some specific class by providing an evolver that uncon-
ditionally throws an exception. However, a simpler solution is to declare an empty evolver with
private visibility. This way, the refusal-to-evolve will be detected at compile-time.

6.3 I-Evolution: Evolving within the Inheritance Tree

The most straightforward of the three approaches, I-Evolution allows an objectv of static typeC
to evolve into any subclass ofC. If C is an interface , thenv can be evolved into any class
that implements it.

The examples presented so far were all based on I-Evolution. This includes the replacement of
theSTATE design pattern with a simpler solution (Section 6.1.1), the DOM tree from Section 6.1.2,
and the linked lists from Section 6.2.1.

6.3.1 Evolution to Mixin-Generated Classes

The target of an object evolution operation can be any class; in particular, it can be a class generated
using a mixin. As an example, consider the mixinBlocked (Figure 6.13).5

This mixin can be applied to classes that implement theJAVA ’s standard interfaceList . The
result is a list that cannot be modified, since any attempt to add or remove objects will yield an
exception.6

5We use the syntax ofJAM for defining mixins in ourJAVA -like language; however, in order to remain consistent
with features to be introduced in the following sections, the application of mixins is expressed using a generics-like
syntax, i.e.,M 〈C〉 is the application of mixinM to classC.

6A true blocking ofJAVA ’s standardList interface will in fact require overriding many more methods; the mixin
presented in Figure 6.13 is greatly simplified.
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mixin Blocked {
inherited public void add(Object o);
inherited public void remove( int index);

public final void add(Object s) { // Override inherited version
throw new IllegalOperationException();

}

public final void remove( int index) { // Override inherited version
throw new IllegalOperationException();

}
}

Figure 6.13: A mixin for creating immutable versions of classes that implement
interfaceList

Using object evolution, list objects can be evolved into blocked-list objects at any stage of their
life. For example, the following code can be used:

List myList = new Vector();
myList.add( · · · ); // add numerous data items
myList →Blocked<Vector>();

Here, applying the mixin to classVector generates a new class that refuses to add new items
or remove old ones. Once the evolution completes, no client that holds a reference to this list
object will be able to alter its content. There are many uses to this capability, including security
considerations and improved performance for defensive programming [29, Item 24] (since there
is no need to create a copy of the list).7

6.3.2 I-Evolution Limitations

I-Evolution offers great flexibility, since the target of the evolution operation can be either a stan-
dard class or a mixin-defined class. In contrast, M-Evolution and S-Evolution, the other two ap-
proaches, cannot use standard classes (such asHead, Interface Method Invocation , etc.)
as the evolution target. I-Evolution’s main limitation, however, is that change must bedown a
pre-determined path, i.e., it can only propagate down the statically-defined inheritance tree. In
the TCP connection example, once a connection object reaches the closed state, it is in what we
may metaphorically term “an evolutionary dead-end” [120, Chap. 5]; it can no longer change its
state. To represent a fresh connection, a newTCPConnec tion object must be created. As we
shall later see, S-Evolution can be used to overcome this limitation in many cases, including this
particular one.

Like all evolution approaches, I-Evolution has its own specific cases of potential evolution
failure. When evolving objectv of static typeC0 to some other typeC, I-Evolution will fail if v’s
dynamic type happens to beC ′, which is a subclass ofC0 but not a superclass ofC. Such failure
results in aClassEvolutionException .

For example, consider the following code, using the DOM class hierarchy presented earlier

7It is for these security considerations that the methods in mixinBlocked were defined asfinal —to prevent
the application of a reverse mixin, “Unblock ”.
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(Figure 6.4):

Node n = getSomeNode();
n→Head();

If getSomeNode() returns an instance of the specific classNode, the evolution will succeed.
Likewise if it returns an instance ofEntity , which is a subclass ofNode and the direct superclass
of Head. However, if the invocation returns an instance ofText (a subclass ofNode which is
unrelated toHead), the evolution attempt will fail. (Consider that some third party might have
a reference to theText object, and that reference’s static type isText ; had we allowed the
object to evolve into the unrelatedHead class, messages from theText class will no longer be
understood.)

The special case of the evolution operationv → C(· · · ), wherev’s dynamic type already isC,
also deserves consideration. While it might seem that this operation is “quiescent”, and should
be allowed to complete by doing nothing, it will in fact fail. It must fail, because the code that
includes this operation expects any side-effects (e.g., output), caused by the evolver of classC,
to happen at this point; and the evolver itself cannot be re-executed, for the same considerations
that prohibit the re-execution of a constructor on an already-constructed object. We suppose that
in languages that do allow object re-construction, quiescent object evolution is also possible.

6.4 M-Evolution: Evolving with Mixins

M-Evolution is a variant of object evolution, where the target of any evolution statement is the re-
sult of applying a mixin to theruntimetype of an object. An M-Evolution statement for variablev
uses the syntaxv → M 〈v〉 (· · · ), whereM is a mixin. The operation selectsM 〈V 〉 as its target,
whereV is v’s runtime type. If classM 〈V 〉 did not previously exist, the evolution operation will
cause it to be generated, at runtime. M-Evolution therefore avoids the “evolutionary dead-end”
limitation of I-Evolution by dynamically extending the inheritance tree.

To understand the usefulness of the concept, consider mixinBlocked (Figure 6.13) again.
While it can be used to generate a subclass of any class that implementsList , it is hardly useful
in a context where all we have is an instance whose static type isList , and its dynamic type
unknown. This is a common case, for example, with methods that accept aList reference as
a parameter. Should such a method wish to evolve its parameter to an immutable object using
Blocked , it can try to evolve it intoBlocked<ArrayList> , Blocked<Vector> , or any
of numerous other combinations (see Figure 6.14); none however is guaranteed to succeed, since
the total number of classes that implementList is unbounded.

The solution is to apply a mixin to the runtime type of the object. The methodblockParam
in Figure 6.15 does just that.

As can be seen in Figure 6.15, mixinBlocked accepts as a parameter not a type, but
a variable; it generates a new class, at runtime, based on that variable’s dynamic type. The
resulting type of the variable after the evolution statement can be e.g.,Blocked<Stack> ,
Blocked<LinkedList> , etc.

6.4.1 M-Evolution and Idempotent Mixins

A moment’s reflection will reveal that the evolution statement in Figure 6.15 can never fail, except
in certain rare scenarios described below. In most cases evolution will succeed since no matter
where in the inheritance tree does the variable’s runtime class reside, it can evolve downwards.
There is no evolutionary dead-end to reach, since the inheritance tree is expanded at runtime by
class generation. In particular, even if the type is already the result of applying theBlocked
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public void blockParam(List lst) {
if (lst instanceof Vector)

lst →Blocked<Vector>(); // Attempt I−Evolution
else if (lst instanceof ArrayList)

lst →Blocked<ArrayList>(); // Another I−Evolution attempt
else if (lst instanceof LinkedList)

lst →Blocked<LinkedList>(); // ... etc.
else // ... etc.
else throw new RuntimeException( "Unknown List implementation." );

}

Figure 6.14: A method that attempts to use I-Evolution for applying a mixin to
a reference. (Figure 6.15 shows a superior alternative, using M-
Evolution.)

public void blockParam(List lst) {
lst →Blocked<lst>(); // M−Evolution

}

Figure 6.15: A method that uses M-Evolution, applying a mixin to a reference’s
dynamic type (cf. Figure 6.14)

mixin, it can further evolve; the type can change, e.g., from classBlocked<Vector> to class
Blocked<Blocked<Vector>> . No complication is introduced by the repeated application of
the mixin, since it isidempotent.

Another example is provided by the classicUndo mixin, reproduced in Figure 6.16.

@Idempotent public mixin Undo {
inherited public String getText();
inherited public void setText(String s);

private String lastText;

public void setText(String s) {
lastText = getText();
super .setText(s);

}

public void undo() {
setText(lastText);

}
}

Figure 6.16: A sample mixin, which adds anundo method to classes that have a
property calledtext with appropriate getter/setter methods (based
on [8, Fig. 1])

Mixin Undo can be applied to any class that features the two methodsgetText and
setText , such as theJButton class fromJAVA ’s standard library. The ability to repeatedly
applyUndo (generating, e.g.,Undo<Undo<JButton>> ) with no adverse effect is less obvious,
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since every such application introduces a new field (lastText ), so that the mold for object cre-
ation (see Section 5.2) is changed. Also, every repeated application will add a new invocation to
the chain of operations that implementsetText . However, other than by means of performance
measurement, external clients have no way to tell an instance ofUndo<Undo<JButton>> from
an instance ofUndo<JButton> ; the behavior remains identical. We therefore maintain that this
mixin is also idempotent, and mark this in the source code using the@Idempotent annotation.

We say that a mixin is idempotent if:

1. It is annotated using@Idempotent (e.g., mixinUndo from Figure 6.16), or

2. It meets both of the following criteria (e.g., mixinBlocked from Figure 6.13):

(a) It introduces no new members (fields or methods), with the possible exception of
private members, and

(b) Any method that it overrides is replaced rather than refined (i.e., the new method body
does not call the inherited version usingsuper ).

Given an idempotent mixinMI and arbitrary typeT , the runtime system will always pro-
videMI 〈T 〉 when asked to generateMI 〈MI 〈T 〉〉.

The case of applying the idempotent mixinMI to an object of typeMx 〈MI 〈T 〉〉, whereMx

is some other mixin, is discussed in Section 6.5.1.
This approach prevents the creation of unnecessarily long “threads” in the inheritance tree,

that might result from the repeated application of a single idempotent mixin to the same object.
ReplacingMI 〈MI 〈T 〉〉 with MI 〈T 〉maintains static correctness, since objects of both types can
be assigned to variables of static typesMI , T or MI 〈T 〉, and will pass the sameinstanceof
tests.

6.4.2 M-Evolution and Non-Idempotent Mixins

M-Evolution’s ability to avoid failure by dynamically extending the inheritance tree is not limited
to idempotent mixins. Consider, for example, the mixinTrack from Figure 6.17.

public mixin Track {
inherited public String getText();
inherited public void setText(String s);

public void setText(String s) {
System.out.println( "Changing the text to " + s);
super .setText(s); // Refinement−− therefore, the mixin is not idempotent

}
}

Figure 6.17: A mixin that reports any change to thetext property. Method
setText is implemented as a refinement, making the mixin non-
idempotent

The two classesTrack<JButton> andTrack<Track<JButton>> will behave differ-
ently, one reporting once and the other reporting twice every change to thetext property. The
mixin is therefore not idempotent, yet nothing prevents its repeated application. In particular the
M-Evolution statementv →Track< v> will (almost) never fail, as long asv’s static type includes
the pair of methods required byTrack . The evolution tree will be repeatedly extended as much
as needed.
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In JAM and similar languages, mixins (with no specific superclass provided) can be used as
types in their own right. Variables of a mixin type can be defined, and the type can also appear in
instanceof statements. Thus, structures such as:

if (!(button instanceof Track))
button →Track<button>();

can be used to prevent undesired repeated application of non-idempotent mixins to objects.

6.4.3 M-Evolution Limitations

By restricting ourselves to properly crafted mixins, we find that M-Evolution will not normally fail,
since it extends the inheritance tree as needed. Two esoteric cases, however, can cause evolution
failure for M-Evolution.

• Failure by final declarations.This risk relates to leaves in the inheritance tree that are,
by their own admission, dead ends that cannot be extended. Mixin application will fail
whenever it attempts to override afinal method, or any method in afinal class. For
example, methodblockParam from Figure 6.15 will fail in its M-Evolution attempt if its
parameterlst is an instance of afinal class that implementsList .

• Failure by accidental overriding.Accidental overriding [8] relates to cases where a mixin
attempts to introduce a new method, only to find out that a method of this signature al-
ready exists in the superclass. From program correctness considerations, this must not
come to pass, and such mixin applications will fail. We thus have that the M-Evolution
statementv → M 〈v〉 (· · · ) will fail if mixin M cannot be applied tov’s runtime type due
to accidental overriding.

As an example for failure by accidental overriding, consider Figure 6.18, showing a class
UndoableJButton inheriting fromJButton .

public class UndoableJButton extends JButton {
public void undo() {

// ... undoes any change to the button’s size, color and
// position, but not changes to its text caption.

}
}

Figure 6.18: A subclass ofJButton with its ownundo method

The application of mixinUndo to classUndoableJButton will fail, since mixin Undo
will accidentally override methodundo() . Thus, in the following code fragment:

JButton button = getSomeButton();
button →Undo<button>();

the M-Evolution attempt will fail if methodgetSomeButton happens to return an instance of
UndoableJButton .

It might seem as if mixinUndo cannot be applied repeatedly to the same object. If
getSomeButton returns an instance ofUndo<JButton> (i.e., an instance to which the mixin
was already applied), then the object’s runtime type already has anundo method (created by the
first mixin application), and the second application will cause accidental overriding. However,
sinceUndo was marked as idempotent, an attempt to generateUndo<Undo<JButton>> will
simply yieldUndo<JButton> .
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6.5 S-Evolution: Evolving with Shakeins

S-Evolution is a variant of object evolution, where the target of any evolution statement is the result
of applying ashakeinto theruntime type of an object. An S-Evolution statement for variablev
uses the syntaxv → S 〈v〉 (· · · ), whereS is a shakein.

Much like M-Evolution, S-Evolution extends the inheritance tree as needed at runtime, and
therefore cannot fail due to inheritance dead-ends (except when the inheritance tree cannot be
extended due tofinal classes or attempts to overridefinal class members). Also like M-
Evolution, shakeins can be marked idempotent making their repeated application a “fail-safe”
operation; shakeinReadOnly (Figure 6.19) is an example of an idempotent shakein. And, be-
cause shakeins cannot introduce new non-private class members, they are not susceptible to
failure by accidental overriding.

1 @Idempotent public shakein ReadOnly {
2 pointcut setter := void set[A-Z]?*(_);

4 around: setter {
5 return ; // Block silently; do not invoke original version
6 }
7 }

Figure 6.19: The idempotentReadOnly shakein blocks all setter methods

6.5.1 Shakein State-Groups

Shakeins and S-Evolution can substitute theSTATE design pattern, since in this pattern, all state
classes implement the same interface. For example, state classesTCPLis ten , TCPEstab -
lished , andTCPClosed all implement the interface defined by the abstract classTCPState
(Figure 6.1); we have a set of classes that share the same type. Such sets can also be generated by
applying different shakeins to the same base class.

We define astate-groupof shakeins as a set of shakeins that share the@State Group anno-
tation, with the same string parameter; different, independent state-groups can be created using
different string parameters. For example, the three shakeins in Figure 6.20 form the state-group
"Connection" .

The compiler enforces the limitation that all shakeins in a given state-group must define the
same set ofprivate class members.8 In the example, this requirement is met vacuously.

Shakeins in the same state-group aremutually exclusivein the following sense: IfC is an
arbitrary class, and shakeinsS1 andS2 are in the same state-group, the application ofS1 to S2 〈C〉
yieldsS1 〈C〉, rather thanS1 〈S2 〈C〉〉. Such an application is called astate transition.

When applied to classTCPConnec tion from Figure 6.2,Listen , Established and
Closed , the three shakeins from Figure 6.20, generate the state subclasses. In particular,Estab -
lished <TCPConnec tion > is equivalent to classTCPConnec tion Estab lished (from
Figure 6.2), andClosed< TCPConnec tion > is equivalent toTCPConnec tion Closed .
These shakeins capture the increment betweenTCPConnec tion and each of its subclasses, but
use S-Evolution statements (lines 4, 8 and 20).

This state-group can overcome the inability of the I-Evolution-based solution to retract its
steps (Section 6.3.2). Given a connection in the “closed” state, we can now change its state back

8Recall that shakeins can never introduce non-private class members, since they may not change the base
class’s type.
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1 @StateGroup( "Connection" ) public shakein Listen {
2 public void open() {
3 // ... establish the connection ...
4 this →Established< this >();
5 }

7 public void close() {
8 this →Closed< this >();
9 }

11 public void acknowledge() { ... }
12 }

14 @StateGroup( "Connection" ) public shakein Established {
15 public void open() {
16 // ... ignore
17 }

19 public void close() {
20 this →Closed< this >();
21 }

23 public void acknowledge() { ... }
24 }

26 @StateGroup( "Connection" ) public shakein Closed {
27 public void open() {
28 throw new IllegalStateException();
29 }

31 public void close() {
32 throw new IllegalStateException();
33 }

35 public void acknowledge() { ... }
36 }

Figure 6.20: A shakeins state-group for generating the various state classes of
TCPConnec tion (cf. the limited I-Evolution version in Figure 6.2)

to “listen” by applying theListen shakein to its dynamic type. Doing so will change the object’s
type fromClosed< TCPConnec tion > to Listen< TCPConnec tion >. There is no limit on
the number of times the state can be changed by re-applying the appropriate shakein; and these
changes do not generate an inheritance tree of unbounded depth.

A note on terminology: While state transition is not, strictly speaking, a move down the in-
heritance tree, it is still a form of object evolution, because conceptually the new statecould be
defined as a subclass (but not a subtype) of the old one. The fact that it is not a subclass is a
means for avoiding needlessly long inheritance “threads”. We use the term “transition” only for
this special form of S-Evolution.
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Transitions within a state-group are type safe, because the type of a shakein-applied ob-
ject, S1 〈C〉, is identical to that ofS2 〈C〉, and to that ofC itself. ShakeinS2 〈C〉 recognizes
all messages thatS1 〈C〉 recognized (and vice versa). The only fine point is the type ofthis in
methods overridden by the shakein application. Such methods may callprivate methods, or
accessprivate data members, defined inS1. Hence the requirement that all shakeins in a given
state-group include the exact same set of private class members.

The trivial case of a state-group with only a single shakein (or mixin) is in fact equivalent to
an idempotent shakein; given such a shakeinSI , applying it toSI 〈C〉 yieldsSI 〈C〉. However,
state-groups with more than one member can only be defined for shakeins, and not for mixins,
because the mixin type itself can be used to define variables. For example, had the three shakeins
from Figure 6.20 been created as a set of mixins, then some code could have defined a variable of
these types, as in:

Established e = new Established<TCPConnection>();

Now, by the definition of evolution within state-groups, evolving the object to mark a closed
connection would change its type toClosed< TCPConnec tion >; yet the variablee cannot
refer to such an object. The problem is never encountered with shakeins, since no variables (or
fields, etc.) of shakein types are possible.

Objects with Multiple States

Multiple shakeins can be applied to a single object. A shakein applied to a class may over-
ride methods; if the set of methods overridden by shakeinS, and the set of methods overrid-
den by shakeinR, are completely disjoint, then the order of shakein application does not mat-
ter; S 〈R 〈C〉〉 andR 〈S 〈C〉〉 are indistinguishable, and we say thatS andR andcommutative
with respect to classC.

Commutativity comes into play when multiple shakeins from different state-groups are applied
to a single object. For example, given state-groupS with statesS1 andS2, and state-groupR with
statesR1 andR2, one can create classes such asS1 〈R1 〈C〉〉, R2 〈S1 〈C〉〉, etc., depending on the
shakeins used and the order of application.

What happens when we apply shakeinR2 to an instance ofS1 〈R1 〈C〉〉? There are four
possible semantics for handling such cases:

1. Error semantics.The application ofR2 results in a runtime error.

2. Accumulation semantics.The result isR2 〈S1 〈R1C〉〉, i.e., the new shakein is added to the
object and does not replace the old shakein from the same state-group (no state transition
takes place).

3. Order-preserving semantics.The result isS1 〈R2 〈C〉〉, i.e., the state-transition preserves
the order in which shakeins from the different state-groups were originally applied.

4. Re-ordering semantics.The result isR2 〈S1 〈C〉〉, i.e., the state-transition re-orders the
shakeins applied to the object.

Accumulation semantics implies that the application results in an object which is simultane-
ously in statesR2 andR1; this situation is not desired sinceR2 andR1 belong to the same group,
which usually implies that they are mutually exclusive. We therefore eliminate this option.

If R1 andS1 are commutative with respect toC, then both order-preserving and re-ordering
semantics yield the same result. More generally, we say thatR andS arecommutative state groups
with respect toC if for all R ∈ R andS ∈ S, R andS are commutative with respect toC. In
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such cases, the choice between the two semantics is of no practical importance. We can therefore
choose either semantics if the two state-groups are commutative, or report an error if they are
not. However, since the actual parameter passed to the shakein application is a variable (and not a
class), commutativity cannot be statically determined.

Either of the two order-related semantics, re-ordering and order-preserving, however, works
without resorting to runtime errors. We now present our reasoning for choosing the former over
the latter.

If R andS are not commutative, there exists a methodm in classC which is overridden
by some shakein fromS as well as by some shakein fromR. The order of shakein application
dictates which version ofm will be used. We say that the shakein (or state), from which the
implementation ofm is chosen, hastaken precedenceover other alternatives.9

Order-preserving semantics implies that the order in which the shakeins were originally ap-
plied to the object cannot be altered. Applying shakeinR2 to an object that already has a state
from state-groupR replaces the object’sR-state, but any states from other state-groups that were
applied after the originalR-state still take precedence.

Conversely, re-ordering semantics implies that the most recent order of shakein application
prevails. Applying shakeinR2 to an object that already has a state from state-groupR replaces
the object’sR-state, while taking precedence over any states from other state-groups that were
applied after the originalR state.

Theprinciple of least surprise[193, Sec. 11.1] dictates that re-ordering semantics is preferable.
Having a previously-applied shakein take precedence over the most recently-applied one (as in the
case of order-preserving semantics) can lead to awkward situations. For example, if shakeinR2

is ReadOnly (Figure 6.19), failure to take precedence implies that applyingReadOnly to an
object might yield anon-read-only object. On the other hand, itdoesmake sense that applying
some shakeinS to a read-only object might make that object non-read-only, depending on the
nature ofS.

This language design decision also resolves the subtlety we raised in Section 6.4.1 in apply-
ing an idempotent mixinMI to an object of typeMx 〈MI 〈C〉〉: The result, using re-ordering
semantics, isMI 〈Mx 〈C〉〉.

6.5.2 Shakeins as Dynamic Aspects

Chapter 2 introduced shakeins as a more organized, parameterized alternative to aspects. As noted
before, a shakein can apply advice (before , after or around ) to methods of the inherited
class, yielding a new implementation of the base class’s type without changing the class itself.
One example is the shakeinLog from Figure 6.21, which can be used as a logging aspect. It
accepts a string parameter, which is the filename to which the log will be written. Logging objects
can be created using statements such as:

List verboseList = new Log[ "list.log" ]<Vector>();

Now, any access to a public method of thever bose List object will be logged in the specified
file.

With object evolution, we can dynamically apply this aspect to existing objects. For example,
a method that accepts some parameterlst of typeList can issue the statement:

lst →Log[ "system.log" ]<lst>();

9An object with multiple states can be likened to a statechart [130] with several AND-states. However, in objects,
a messagem is intercepted byonemethod implementation (the most recent overriding version ofm). In contrast, an
evente applied to a statechart with several AND-states can be processed by any interested state simultaneously; there
is no concept of a “most recent” state, and no precedence issues.
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@StateGroup( "Log" ) public shakein Log[String filename] {
pointcut publicMethod = public (*);

before : publicMethod {
FileOutputStream fos = new FileOutputStream(filename);
// ... log the operation to the file ...
proceed ;

}
}

@StateGroup( "Log" ) public shakein NoLog {
// No changes to the base class

}

Figure 6.21: A dynamic logging aspect, defined as a shakein and its canceling
counterpart

and evolve the list into a logging list.
The use of state-groups allows the dynamic aspect to be removed as well, given an empty

shakein from the same state-group:

lst →NoLog<lst>();

(shakeinNoLog is an empty shakein, defined in Figure 6.21).
Other implementations of dynamic aspects (e.g., JBoss’s dynamic AOP) use a flag, or a list of

active aspects, that should be consulted every time a method is invoked if the receiving object can
be the target of dynamic aspects. The evolution-based approach offers a different tradeoff, where
method invocation is faster (no flag or list to consult), but the application or removal of aspects is
potentially slower. The following section discusses possible implementation strategies for object
evolution, and their associated performance cost.

6.6 Implementation Strategies

To support object evolution, the runtime system (e.g., Java Virtual Machine) must be able to (a)
generate classes at runtime (for M- and S-Evolution), and (b) change an existing object’s type.

Since standard JVMs support runtime class loading, various technologies for runtime class
generation exist, and are used in mainstream applications such as the Spring Application Frame-
work [146], Hibernate [22], and iBATIS [12]. J2EE application servers also generate classes at
runtime as part of the application deployment process [202].

More difficult is the issue of changing an object’s class at runtime.
We distinguish between two cases of object evolution. In the simpler case, the evolution

process does not change the class’s mold, i.e., the target class does not define any new fields.
Here, the type-change can be realized by changing the object’s VMT pointer.10 The operation is
less straightforward, however, in the more general case, where new fields are introduced by the
target class, and the object’s representation in memory must therefore expand.

A simple approach would be to allocate a new object and initialize its fields with the field
values of the object being evolved. Next, all references to the old object must be updated so
that they now point to the new one. To this end, the virtual machine must be able to locate all

10Interestingly, such changes happen during the object construction process in C++.
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references to a given object. Version 6 of theJAVA SE [213] includes the required “heap walking”
capabilities [214] as part of the virtual machine’s debug interface (JDI). However, we suspect that
this approach might be inefficient.

Optimizing the performance of a solution requires empirical data about the frequency and
type of object evolution operations that are common in programs. Below, we outline different
approaches, each appropriate for different usage scenarios, which can be used when such data
becomes available.

The discussion assumes that objectv is evolved from classA to classB. The size required for
an object of classX is denoted|X|.

6.6.1 Using Object Handles

Certain memory-management systems that support automated garbage collection store, in each
reference variable, a pointer to aforwarding pointer[42], or handle, rather than a direct pointer to
the object itself. The handle itself is never moved, but it points to the actual object location, which
can change repeatedly during the object’s lifetime.11.

Normally, objects are re-located in memory due to thecompactionpart of the garbage-
collection process [147]. However, a similar a re-location process can also realize object evolution,
as follows:

1. Allocate a new blockβ of size|B|,
2. Copyv’s original content toβ,

3. Updatev’s handle so that it points toβ,

4. Mark v’s old location as empty space.

The main drawback of using object handles is that every field or method access involves a dou-
ble de-referencing operation. Clearly, a JVM-level implementation of this double de-referencing
would be faster than the double de-referencing implied by wrapper-based implementation, such
as the one employed forFICKLE [86]. Optimization techniques presented in the Metronome
JVM [17] indicate that double de-referencing can be optimized to a low (4%) performance over-
head.

6.6.2 Compacting Evolution

The main benefit of the handles-based approach is that it ensures a constant-time, and normally
very fast, evolution operation. One may assume, however, that object evolution is a relatively
rare operation in the program’s life cycle. We present now an alternative that focuses on a lower
environmental impact, while the object evolution operation itself might be relatively costly.

In the compacting evolutionapproach, every object evolution operation forces a complete
garbage collection run, including memory compaction. During this compaction, the system leaves
a “padding” of|B|− |A| free bytes following objectv. Once the compaction completes, objectv’s
size can be increased to|B| by claiming the padding bytes.

If evolution operations are indeed scarce, the performance impact of this approach will be
small, since the forced garbage collection replaces the next scheduled one.

A performance problem could arise if evolution operations are more frequent than scheduled
garbage collection runs. This is the case, e.g., in Figure 6.9, where evolution is performed inside
a loop.

11Such a mechanism is used to support reference replacement inGILGUL ’s virtual machine [72]
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Two schemes might mitigate this. First, since loops can be detected by the JVM, compact-
ing evolution can be modified so that the forced compaction run pads every instance of classA
with |B| − |A| bytes whenever an object of classA is evolved inside a loop; this ensures that a
forced garbage collection will be required only for the first iteration. The unused padding will be
removed by the next regularly-scheduled memory compaction.

Alternatively, a reference-counting garbage collector can be used. A known property of such
collectors is that the collector’s runtime is relatively short if memory usage has not radically
changed since the last collection cycle [161]. It therefore addresses the more general case of
frequent evolution operations, and is not limited to evolution operations inside loops.

6.7 Related Work

6.7.1 Monotonic Reclassification in the Literature

The idea of improving the type safety of object reclassification by making the changes monotonic
is not new. Back in 1993, Beck presented theSCRIPTABLE OBJECTSdesign pattern [24], allowing
SMALLTALK objects to gaininstance-specific behaviorby changing their own methods, using a
method calledspecialize: . This is a trivially monotonic change, in the sense that it does not
alter the object’s interface (the set of acceptable messages).

Object extension[107, 109] encompasses non-trivial monotonic changes. One possible kind
of changes is the dynamic extension of an object (known asself-inflicted extension), with no
prescribed template serving as the object’s new class. In statically typed systems, this implies that
only the object’s own methods can access any newly introduced method or data member.

Ghelli [107] suggested a calculus in which what he called “incompatible changes” cannot
occur, by letting the same object assume different roles in different contexts. His work is done
in the context ofFIBONACCI [3], a database language. Indeed, roles are more natural to object-
oriented databases than to object-oriented programming languages. The reason is that the notion
of a dynamic type of an object may conflict with the “role” imposed on it. For example, failures
in I-Evolution are not necessarily a result of incompatible changes.

Systems that do offer non-monotonic, type-safe object reclassification restrict the choice of
objects that can be reclassified, and the range of reclassification target classes. In Serrano’swide
classessystem [201], objects can only bewidenedto instances of wide subclasses of their current
class. In other words, what we call evolution is restricted to a pre-designated set of subclasses.
Conversely, only wide objects (instances of wide classes) can beshrunk. The ability to shrink
objects implies that the system cannot be used in statically-typed languages [201, Sec. 3.6].

6.7.2 The Work onFICKLE

TheFICKLE programming language (and its newer versionsFICKLE II [87] andFICKLE3 [77]) are
more general than evolution, since they allow non-monotonic reclassification. For example, a frog
that turns into a prince inFICKLE may forget how to kiss. However, reclassification inFICKLE

is restricted in the sense that only instances of designatedroot classes can be reclassified, and the
destination class must be a pre-designatedstatesubclass of the root class. When moving from one
state-class to another an object sheds any fields and methods not included in the root class.

To maintain static typing, theFICKLE type system must track theeffect of each method,
namely the list of classes whose instances may be reclassified (directly or indirectly) by the
method. To avoid whole system analysis, the programmer is requested to annotate each method
with the list of reclassification changes it may make. The type verifier then checks that this anno-
tation is compatible with the actual changes done by the method itself, and with the annotations
of any called method. Also, the verifier makes sure that the effects list is not increased in the
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course of overriding; the programmer therefore should include in the effects list of a method all
anticipated actions of reclassification in overriding methods.

To understand how the effects list is used to ensure type safety, consider again the frog and
prince example, which is modeled inFICKLE as anActor root class, with two state classes
Prince andFrog . After calling a method in which a frog may be kissed,all variables of type
Frog effectively change their static type intoActor . To generalize, after method with an effect
on root classC is invoked, all variables of state classS (S ≺ C) must be treated as instances
of the root class, and fields or methods declared inS become inaccessible. The reason is that,
due to aliasing, any one of these variables may just have been reclassified, and no longer has the
additional features ofS. For the same reason, state classes cannot be used to define variables,
although this restriction was somewhat eased inFICKLE II (where state classes are only prohibited
from being used to define fields).

The set of classes composed of a root class and its state subclasses inFICKLE can be compared
to a class and the set of re-implementations that can be derived from it using a shakein state
group. In both cases, objects can be reclassified freely inside the group. Also, to maintain type
safety, in both cases there are restrictions on using the non-root classes as types. InFICKLE II ,
these restrictions are relaxed and pertain to fields only, whereas in our system they are absolute.
Another advantage ofFICKLE state classes is that, unlike shakeins, they can introduce externally-
accessible, non-private members. Perhaps most importantly,FICKLE is strongly-typed, i.e.,
the reclassification operation cannot fail.

On the other hand, shakeins integrate into the existing type system without tracking the effect
of each method, and without requiring the class serving as root to be marked as such. InFICKLE,
any subclass (direct or indirect) of a root class must be a state class, whereas with shakeins, regular
classes, that can have regular subclasses, are used as roots. Thus, shakeins can be used to create a
state group from existing classes within a pre-defined hierarchy, such as the standard library.

Interestingly,FICKLE3 removed the requirement of pre-declaration of root and state classes.
In FICKLE3, any object may change its class to any other class, just as withSMALLTALK ’s
becomes: . Roughly speaking,FICKLE3 computes the root and the state classes from the reclas-
sification annotations, so if a method reclassifies an object of typeA into typeB, then after this
method is called, all objects of any typeA′, A′ ¹ A are suspects of turning into aB. Therefore,
after such a method is called, only features common toA andB are accessible in such objects.
One may say that the method call changed thestatic typeof all such variables fromA′ to the least
common superclass ofA andB.

FICKLE and FICKLE II were already implemented [7] by translating them intoJAVA . The
implementation ofFICKLE3, in which any object may be reclassified into any class, should deal
with the need to wrap all objects as explained above in Section 6.6.

As noted before, object evolution is not as type safe as all versions ofFICKLE, and may
generate runtime errors. On the other hand, object evolution does not burden the programmer with
writing the reclassification annotations of methods. Also, the difficulties of unrelated variables
loosing their static type after a call to a reclassifying method do not occur with object evolution.

Another advantage of object evolution is its inherent thread-safety. InFICKLE, a reclassi-
fication operation can change the type ofthis in other threads, causing it to lose some of its
associated methods (those that were introduced in its previous state class and are not available in
the new one). With object evolution, since the change is purely monotonic, this problem does not
arise.

FICKLEMT [76], the newest version ofFICKLE, addresses the issue of thread-safety by intro-
ducing an elaborate system of locks, that prevents any object that might be reclassified in one
thread from being reclassified, or even used as a receiver, in another thread. This locking system
manages a dynamic dictionary of reclassification candidates of active threads, and delays any other
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thread that tries to send a message or reclassify one of these candidates.

6.7.3 Object Replacement

Related to reclassification and evolution but different isobject replacement, as offered by the
GILGUL [72] language. GILGUL extendsJAVA in allowing a global change of all references
to a certain object, redirecting them to another object. Static type safety is maintained by the
requirement that the type of the new object must be the same as that of the type of the original
object, or a subtype thereof. Thus, replacement must deal with the same kind of runtime failures
that might occur with I-Evolution.

GILGUL also introducesimplementation-only, or typeless, classes. A typeless class extends a
regular class (directly or, via other typeless classes, indirectly) without introducing a new type into
the system. In particular, like shakein-generated classes in our system or state classes inFICKLE,
no variables of a typeless class can be defined inGILGUL . Instances of a typeless classC can then
be replaced by instances of any class having the same least non-typeless superclass.

6.8 Summary

This chapter propounded the inclusion of object evolution mechanisms into mainstream program-
ming languages, and in particularJAVA . We showed how this mechanism integrates well with the
popular mechanism of inheritance, and with the less popular, but still appealing mechanisms of
mixins and shakeins.

Our language design decisions favored type-safety, but in respect of practical concerns, not
with as much zeal as other approaches to object reclassification. To our knowledge, this is the first
attempt to reconcile in this manner the conflicting just purposes of type-safety, reclassification
flexibility and practical concerns.

In the context of the current work, i.e., employing aspect-oriented programming for the devel-
opment of better middleware frameworks, object evolution provides the last piece of the puzzle,
namely the ability to use shakeins as dynamic aspects.
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Chapter 7

Summary

Don’t fear failure so much that you refuse to try new things.

— Louis E. Boone

Middleware frameworks, the software systems used to develop enterprise applications, com-
mand a multi-billion dollar market [78, 228]. In this thesis, we have presented a manner in which
the benefits of aspect-oriented programming can be ushered onto middleware frameworks, with
little or no risk of disturbing existing code.The mechanisms presented here havethe potential
of improving the modularity, and reducing the development costs, of enterprise applications.

Four suggested extensions to object-oriented languages were presented in this work:

Shakeins allow for an orderly application of advice to classes, thereby providing the benefit of
aspects without requiring any change to the underlying object model;

Factories provide classes with complete control over their instantiation process, including the
ability to mandate shakein application;

JTL is a query language that enables a more expressive selection, by shakeins, of target points
for advice application; and

Object Evolution allows instances to change their class at runtime without forfeiting strong typ-
ing, and enable the use of shakeins as dynamic aspects.

While JAVA was used as the base object-oriented language when presenting these extensions,
nothing binds them specifically toJAVA , and each is equally applicable to other languages such as
C#, EIFFEL, etc. Three out of the four suggested extensions can be added toJAVA with no change
to the underlying virtual machine, and should be equally simple to apply elsewhere.

We have also presentedASPECTJ2EE as an outline for a possible integration of the suggested
extension into existing EnterpriseJAVA applications and frameworks.

It is interesting to note that if applied in union, the mechanisms suggested in this work render
several classic design patterns superfluous, while improving others. Of the 23 original Gang of
Four patterns [105], over a third are affected:

1. ABSTRACT FACTORY is superfluous, since anysupplier-side factory“provide[s] an inter-
face for creating . . . objects without specifying their concrete classes.”

2. FACTORY METHOD is superfluous, since anyclient-side factory“lets a class defer instanti-
ation to subclasses.”

163



3. SINGLETON can be implemented without disturbing clients usingsupplier-side factories.

4. FLYWEIGHT: as above.

5. DECORATORcan be implemented using shakeins and S-Evolution, which can “add respon-
sibilities to individual objects dynamically and transparently, that is, without affecting other
objects . . . responsibilities that can be withdrawn.”

6. CHAIN OF RESPONSIBILITY can sometimes be represented using a series of shakein appli-
cations, each shakein acting as a receiving object and the application order representing the
order within the chain.1

7. OBSERVERcan sometimes be represented using shakeins; alternatively, a shakein can man-
age the list of observers and handle the sending of notifications, thereby simplifying the
subject class. Events that should generate notification can be expressed, using JTL, as a
pointcut parameter in said shakein.2

8. STATE is superfluous given object evolution; rather than having the object “appear to change
its class,” an actual change of class is possible.

Other known patterns, some specific to middleware frameworks, are likewise affected, includ-
ing OBJECT POOL [122], INTERCEPTIONFILTER, SERVICE TO WORKER, SERVICE LOCATOR,
andDOMAIN STORE [6].

7.1 Directions for Future Research

Here are a few important directions for future research, based on the work presented in this disser-
tation:

Applications in other domains. This work focused on the applicability of shakeins and related
technologies to the domain of enterprise software development in general, and middleware
frameworks in particular. However, we believe that some of these techniques could be just
as usable for other software development domains. The need to master software complexity
in some domains is reflected in the emergence of new kinds of middleware frameworks,
such as middleware frameworks for online game development [104] and in particular mas-
sively multiplayer games [18]; middleware frameworks for wireless application develop-
ment [225], and more. While the non-functional, cross-cutting concerns presented in each
of these domains are significantly different than those presented in enterprise application
development, they can still be represented using shakeins and related mechanisms. And
although our design goal was better handling of large-scale applications, nothing in partic-
ular limits the use of the resulting mechanisms, such as factories, in small-scale application
development as well.

A type system for shakeins.Another challenging topic is that of a type system for shakeins, in-
cluding a type system for making and enforcing constraints on shakein parameters, and
typing of shakein composition. Such a type system should deal with the case that some of
the configuration parameters are specified at the time of composition.

1Interestingly, AOP solutions that use interceptors—such as the Spring framework—employCHAIN OF RESPON-
SIBILITY to implement advice.

2Filman and Friedman’s milestone paper about the definition of AOP [97] was motivated by the question whether
event-based publish-and-subscribe mechanisms, i.e., theOBSERVERdesign pattern, are AOP.
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Mass application of shakeins.We argued that explicit application of shakeins to classes con-
tributes to the expressive power that programmers may need. We explained why a global,
system-wide application of aspects may lead to undesired results. Still, as evident by the
ASPECTJ2EEexperience, it is necessary at times to apply shakeins to a large number of
classes. We need a mechanism that supports this need. The answer may lie with a syn-
tax and semantics for applying a certain shakein, or even a family of shakeins, to an entire
package, or to a class hierarchy.

Reflective mixins. The two key differences between shakeins and mixins is that the latter are un-
aware of the class that they extend, but on the other hand they may change the type, not only
the implementation, of classes to which they are applied. By adding reflection capabilities
to mixins (i.e., pointcut and advice mechanisms), we can create a hybrid shakeins-mixins
construct that can change the type while being aware of the modified class. This construct
can be made even more powerful by accepting a new parameter type: member names. For
example, consider anUndo mixin (based on Figure 6.16) that accepts two parameters—a
pointcut defining the operation to undo (e.g.,setName ) and the name of the undo method
to be introduced (e.g.,undoSetName ). Such a mixin can be applied repeatedly, each time
adding a new undo method for undoing a different kind of operation.

Embedded JTL. We would like to see a type-safe version of embedded JTL, similar to the
work on issuing type safe-embedded SQL calls fromJAVA [71, 165] and theC# LINQ
project [168]. The grand challenge is in a seamless integration, alinguistic symbiosis[41]
of JTL with JAVA , perhaps in a manner similar to by which XML was integrated into the
language by Harden, Raghavachari, and Shmueli [131].

Evolution of Generic Types. A unique combination of theoretical and practical challenge is
posed by the interaction of object evolution with the parametric polymorphism ofJAVA .
AlthoughList<Dog> is not a subclass ofList<Animal> , we still may want to evolve
the latter into the former; not just evolve the content of the list, but the list object itself.
Since the two types are related, and the change is monotonic, it may be possible to develop
mechanisms for this kind of reclassification which are not as general as what is found in
FICKLE. A unique practical slant of the problem is that inJAVA , the two types have the
same runtime representation [39].
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