
Three Approaches to Object Evolution

Tal Cohen∗ Joseph (Yossi) Gil†
Google Israel Engineering Center‡

ABSTRACT
Dynamic object reclassification allows changes to the type of an
object at runtime. This paper makes the case for object evolution, a
restriction of general reclassification by which an object may gain,
but never lose properties. We argue that evolution is an expres-
sive and useful language construct and can be implemented effi-
ciently. Further, the monotonicity property of evolution promotes
static type-safety better than general reclassification. We describe
three concrete variants of evolution, relying on inheritance, mix-
ins and shakeins, and explain how any combination of these can
be integrated into a concrete programming language. We chart the
language design space, mention our implementation, and introduce
the notion of evolvers, a critical mechanism for maintaining class
invariants in the course of reclassification.

1. INTRODUCTION
A frog may turn into a prince, if kissed. The modeling of such

a phenomenon in the object-oriented world is known as (dynamic)
object reclassification. As indicated by the literature, starting at
least as early as 1993 [26], and as we shall reiterate here, the need
for reclassification arises frequently in the software world, and cases
such as the frog and prince example are not rarities. Some lan-
guages provide built-in support for reclassification. For example,
SMALLTALK offers the “becomes:” method [18, p. 246], and in
PYTHON, an object can be reclassified by assigning a new value
to its __class__ attribute. Yet, these mechanisms are notoriously
unsafe and difficult to use, which probably explains why strongly-
typed languages, like JAVA, include no such support.

State of the art research on object reclassification (see e.g., [11–
13, 15–17, 25]) battles with the challenge of extending JAVA with a
type-safe alternative to becomes. In this paper, we are interested in
the tradeoff between expressive power and type-safety offered by
a particular kind of reclassification, what we call object evolution
(OE), by which dynamic changes to an object’s class are mono-
tonic—an object may gain, but never lose, capabilities. Once an
∗Corresponding author, talcohen@google.com
†Research supported in part by the IBM faculty award.
‡Research done in part while the authors were at The Technion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ ’09, August 27–28, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-598-7 ...$10.00.

object evolves, it cannot retract its steps and be reclassified into its
previous class.

Evolution is not as general as reclassification, and may not al-
low changes as drastic as a frog turning into a prince. Our main
interest is not so much with the theoretical foundation of object
evolution, which previously received attention in the literature, but
rather in the practical issues raised by the introduction of evolution
into strongly-typed languages like JAVA.

We argue that there are many applications of monotonic evolu-
tion in practical systems. Most examples used in previous work
about reclassification are monotonic: A suvery of the motivational
examples of numerous papers about reclassification [6, 11–13, 17,
25], found a total of ten distinct examples in such diverse domains
as banking, GUI development, games, and more. Of these, only
three examples are in fact non-monotonic; the other seven could all
be implemented using object evolution.1

The monotonicity property makes it easier to maintain static type
safety with object evolution than in general object reclassification.
Note that the monotonicity property may make evolution irreversible.
This restriction is ameliorated by separating the notion of class
from that of type, and with the help of shakeins [8] we find that
object evolution can support repeated state changes, and even undo
changes, under certain limitations.

We shall also see that OE requires less changes to the host lan-
guage and collects a reduced performance toll, mostly because all
descends in the inheritance hierarchy are necessarily monotonic.

The contributions of this paper include:

1. The Case for Object Evolution. We argue that object evo-
lution is in line with object-oriented thinking and accepted
design paradigms. For example, the STATE design pattern is
naturally expressed with evolution. Object evolution is also
thread-safe and integrates well with other useful program-
ming techniques, such as lazy data structures.

2. Concrete Language Extension. We discovered an interesting
problem of proper initialization in the course of reclassifi-
cation: the object must maintain the state of existing fields,
which may have changed after their initialization, yet its newly
acquired fields must also be properly initialized. The class
invariants of the new class must likewise be satisfied.
We present evolvers as a complementary mechanism to con-
structors, containing the additional initialization code that
separates an object of one class from an object of another.
Like constructors, evolvers can accept parameters, indicat-
ing that an object cannot be evolved into a new class without
some additional required information. Conversely, we also
show that in many cases, default evolvers can be automati-

1For details see http://ssdl-wiki.cs.technion.ac.il/wiki/index.php/Reclass_Examples .
For a general survey of related work, see Sec. 6.

cally derived from the constructors of a class.
3. Chart of the Language Design Space. This paper presents

three flavors of the object evolution mechanism, tagged I-
Evolution, M-Evolution and S-Evolution, relying on inheri-
tance, mixins and shakeins, respectively. The flavors are in-
dependent, meaning that a language designer can choose to
implement any of the seven possible combinations, ranging
from choosing a single approach to integrating all three.

4. Analysis of Runtime Failures. Just as an object construction
operation can fail (e.g., when the constructor throws an ex-
ception), so can object evolution. We study and compare the
relative merits of the three approaches by the kinds of run-
time failures they may generate.

5. Implementation Strategies and Prototype. Finally, we turn
to dealing with implementation. We briefly outline several
alternatives, each appropriate for different usage scenarios,
and present a prototype implementation as a JAVA extension.

1.1 Three Approaches to Object Evolution
We present three theoretical approaches to OE, each with its

unique power of expression and underlying metaphor. These ap-
proaches are not mutually exclusive; all three, or any subset thereof,
can co-exist in the same programming language.

The first approach, I-Evolution, is based on standard inheritance.
Here, an object can evolve into any subclass of its own class. This
change is necessarily monotonic, since a subclass may only ex-
tend its base class. Evolution is expressed using the syntax v →
C(· · ·), meaning the object referenced by variable v is evolved
(using the → operator) to an instance of class C. The parenthesis
will often be empty, i.e., v → C(); however, the evolution process
may accept parameters.

The evolution target C must be a subclass of v’s type. The set
of possible reclassification targets is therefore defined by the inher-
itance tree. The similarity of this tree to taxonomy trees used in
biology to describe evolution inspired the process’s name.

The second approach, M-Evolution, is based on mixin inher-
itance [5]. With M-Evolution an object can only evolve into a
subclass defined using mixins. Recall that given a class C and a
mixin M , the application of M to C, denoted M 〈C〉, is a subclass
of C. Class M 〈C〉 is an ordinary class, and can therefore serve
as the target of an I-Evolution operation. With M-Evolution, how-
ever, the evolution target is selected—and possibly generated—at
runtime, based on the object’s actual type at the time of evolution.
The M-Evolution operation v → M 〈v〉 (· · ·) selects M 〈V 〉 as its
target, where V is v’s runtime type. Thus, an M-Evolution can be
thought of as an application of a mixin to an instance rather than to
a class. Because a mixin can only extend its operand, M-Evolution
is also guaranteed to be monotonic.

Finally, S-Evolution is limited to shakein inheritance. Shakeins [8]
are a programming construct that, like mixins, generates a new
class from a given class parameter. Unlike mixins, a shakein does
not generate a new type. Given a shakein S and a class C, the
shakein application S 〈C〉 represents a new class but not a new
type; it is an implementation class [9]. (See Sec. 4.3 below for
a more detailed overview of shakeins.)

S-Evolution can be thought of as an application of a shakein to
an instance rather than to a class. Such an application, by defi-
nition, does not change the object’s type (in contrast to its class);
in particular, the shaked object cannot understand any new mes-
sages. S-Evolution is therefore trivially monotonic, and resembles
instance-specific behavior facilities in SMALLTALK [3]. However,
unlike instance-specific behavior, the behavior itself is described in
an organized manner (in the shakein’s definition) rather than rely-

ing on ad-hoc changes to an object’s message handlers.
A unique feature of S-Evolution is that it can be temporary, i.e.,

in certain circumstances, the object may later re-evolve into a dif-
ferent shakein-based class, undoing (or “de-evolving”) the effect
of the first shakein. Whereas shakeins can be used as enhanced as-
pects [7,8], S-Evolution introduces the possibility of using shakeins
as dynamic aspects [20, 23, 24].
Outline. Sec. 2 makes the case for object evolution using real-
world motivating examples. Sec. 3 presents the concept of object
evolution in greater detail, and also explains where a simple evo-
lution operation might fail. Sec. 4 provides details about each of
the three kinds of object evolution. An overview of possible imple-
mentation strategies, and a discussion of our own prototype imple-
mentation, are discussed in Sec. 5. Sec. 6 discusses previous work
and outlines some directions for further research.

2. THE CASE FOR OBJECT EVOLUTION
As early as 1993, Taivalsaari [26] argued that design often needs

objects that change their behavior at runtime. (Taivalsaari’s own
proposed solution, modes, can be nicely implemented using S-Evo-
lution.) This need for reclassification motivated much subsequent
research, including [6, 9–13, 15–17, 25].

An important demonstration of this need is provided by the pro-
gramming language e, manufactured and sold by Cadence, and
used widely in the hardware verification industry. What is called
when-inheritance [19] in e is in fact a mechanism, similar to S-
Evolution, by which an object reclassifies itself.

This section emphasizes the case for object evolution showing
several cases where object evolution can be used to improve upon
program design. Sec. 2.1 explains how the STATE design pattern
maps naturally to evolution. In Sec. 2.2 we show how program
design of lazy data structures can benefit from evolution. Two ex-
amples are used there for concreteness: The DOM representation
of HTML data structures, and the evolution of the Abstract Syntax
Tree in the different stages of the compilation process.

2.1 Implementing the STATE Design Pattern
In their presentation of the STATE design pattern, the Gang of

Four use a TCP connection class as an example [14, p.305]. Fig. 2.1
shows the class structure realizing this example.

Figure 2.1 The state-changing TCPConnection class (from [14]). The ob-
ject can change its behavior, seemingly changing its type, by replacing the
internal reference (state) to a different implementations of TCPState.

TCPConnection
open()
close()
acknowledge()

TCPState
open()
close()
acknowledge()

state
TCPEstablished
open()
close()
acknowledge()

TCPListen
open()
close()
acknowledge()

TCPClosed
open()
close()
acknowledge()

state.open();
The connection object is required to respond differently to mes-

sages (such as open) based on its current state, which can be either
of “established”, “listen”, and “closed”. Rather than represent the
state as an int data member (or an enum), the design pattern sug-
gests representation using a data member s of a dedicated state
type S, to which all requests are delegated.

The abstract state class (here, TCPState) has a concrete subclass
for each possible state. Each such subclass responds differently
to messages; for example, the close message changes the object’s
state (to “closed”) if it is in either the “established” or “listen”
states, but throws an exception if it is already in the “closed” state.

To change its state, the object simply replaces the instance to
which the state variable s refers.

The intent of the pattern is to “[allow] an object to alter its be-
havior when its internal state changes. The object will appear to
change its class” [14, p.305; emphasis added]. But, as this descrip-
tion suggests, the same effect can be better achieved by literally
allowing the object to change its class at runtime.

Fig. 2.2 outlines the code for an implementation of the same
TCPConnection class, which relies on object evolution. Here, the
state-changing operations use object evolution (lines 3, 4 and 10)
to change the object’s state by advancing its class. Since evolu-
tion is transparent to aliasing, any reference to the connection will
now use the newly-classified object, and thus any method invoca-
tion will be affected by the new state.

Figure 2.2 Implementing TCPConnection and its state-changes using ob-
ject evolution. Operations that change the object’s state do so by evolving
this to a different subclass (lines 3, 4 and 10).

1 public class TCPConnection {
2 // This class represents the initial state, ‘‘listen’’.
3 public void open() { ...; this→TCP_Established(); }
4 public void close() { this→TCP_Closed(); }
5 public void acknowledge() { ... }
6 }

8 class TCP_Established extends TCPConnection {
9 public void open() { /∗ ignore ∗/ }

10 public void close() { ...; this→TCP_Closed(); }
11 public void acknowledge() { ... }
12 }

14 class TCP_Closed extends TCP_Established {
15 public void open() { throw new IllegalStateEx(); }
16 public void close() { throw new IllegalStateEx(); }
17 public void acknowledge() { ... }
18 }

Several benefits of the approach should be immediately apparent:

• Fewer classes. Whereas the STATE design pattern solved this
particular problem using five classes (a wrapper, an abstract
state class, and three concrete state classes), the evolution-
based solution requires only three (one class per state).

• No code duplication. In the STATE pattern, the state class,
TCPState, copies the interface of the wrapper class. Such
fragile code duplication is not needed with object evolution.

Additionally, for more complex scenarios:

• No need to transfer state data. Because the state is always
represented by the same object, there is no need to copy data
from the old state object to the new one with each state tran-
sition.

The only limitation of this solution is that connection object can-
not be reused (see Sec. 4.1). A better solution, using shakeins and
state-groups, is presented in Sec. 4.3.3.

2.2 Lazy Data Structures
Since object evolution moves objects down the inheritance tree,

it can be used to evolve instances of general, top-level classes into
more specific sub-classes. Such changes can be useful as more
information about the object is obtained (see example in Sec. 2.2.1
below), or for lazy evaluation of data structures. In the latter case,
nodes in the data structure are first represented as general “node”
objects, to be replaced by specific nodes on a per-need basis.

Consider, for example, the hierarchical in-memory representa-
tion of HTML files (or XML files, etc.), and in particular, the com-
mon DOM (Document Object Module) tree representation.

Fig. 2.3(a) shows a simple HTML file; in Fig. 2.3(b) we see its
DOM representation. We see that every opening tag is represented

Figure 2.3 A sample HTML document and its Document Object Model
(DOM) tree. Nodes in the tree are instances of classes shown in the hierar-
chy of Fig. 2.4.

1<html>
2 <head>
3 <title>Welcome!</title>
4 </head>
5 <body>
6 <h1>This is my page.</h1>
7 <p>How <i>nice</i>!</p>
8 </body>
9</html>

(a) An HTML document.

Document

Head

Title Header1 Paragraph

Italics

Body

Text Text

Text

Text Text

(b) The document’s DOM
tree.

as a tree node, while the HTML content that occurs from this tag
to its matching closing tag is represented as the subtree rooted at
this node. A sequence of plain text, with no tags, is represented as
a leaf node of type Text; e.g., the fragment <i>nice</i> (line 7) is
represented as an Italics node with a Text subnode.

Fig. 2.4 is a UML class diagram for the classes used in Fig. 2.3(b).
We see that abstract class Node is at the hierarchy’s root, that Text
is a final class, and that different classes offer different services.

Since programs Fig. 2.4. Classes used for representing DOM trees.

Node
appendChild()
getChildNodes()

Text
getText()
setText()

Document
...

Element
getName()
getAttributes()

Head
...

Body
...

Paragraph
......

often end up us-
ing only part of
the tree, a com-
mon optimization
technique is lazy
evaluation, where
one object repre-
sents an entire sub-
tree, to be expanded
on a per-need ba-
sis.

Here, lazy evaluation means that class Node is not abstract. Its
instances denote yet-unparsed HTML fragments.

Fig. 2.5 shows a possible intermediate state of Fig. 2.3(b)’s tree.
The left-hand child of the root node, marked n1 in the figure, rep-
resents the subtree contained inside the <head>. . . </head> tag pair.
Should the program code delve into this subtree, this node must be
expanded, with new nodes created to represent its children.

In a lazy DOM parser which does not use object-evolution, the
expansion step must either (a) replace the node object n1 with a
specific node (i.e., create a new object and discard the old one), or
else, (b) change the state of this object, so that it now represents a
specific node.

The first solution requires that the Fig. 2.5. A possible stage in
the lazy creation of the tree fr-
om Fig. 2.3(b). Nodes n1, n2

and n3 were not yet expanded.

Document

n1:Node

Header1 n2:Node

Body

n3:Node

parser must not allow references to
node n1 to leak, since the existing
object must be replaced with a new
one, and the old one must cease to
exist. This complicates the imple-
mentation, and in particular requires
an expansion of the subtree whenever
n1 is requested by any client, even if
that client will not eventually access
any child of n1. (Things are further
complicated in other data structures, such as directed graphs, where
there are multiple references to the object.)

The second solution implies that the Node class must have two
operational states, pre- and post-expansion. After the expansion,
it must be able to act as any of its subclasses; in this example, n1

must be able to act as an instance of class Head after its expan-
sion, whereas n2 must be able to act as an instance of Paragraph

and n3 as Text. The STATE pattern can be used here: maintain a
field of type Node in each un-expanded node (e.g., n1), and, upon
expansion, assign a new instance of a specific subclass (e.g., Head)
to this field. Any message received by the node will now be del-
egated to the more specific Node-typed field. An implementation
of a lazy DOM tree with the STATE design pattern is inefficient,
since it requires delegation. Such an implementation is also cum-
bersome, complicating both the design and the implementation of
classes: Node’s API must include the union of all methods found
in all subclasses, and some of these methods might fail at runtime
(e.g., the method getText from class Text must be processed in the
expanded n3, but rejected by the expanded n1 and n2).

Now consider the OE-based solution. Whenever the subtree rep-
resented by object n1 must be expanded, we can evolve this object
from its current class (Node) to any of its subclasses, and in particu-
lar Head. The evolution operation n1→Head(· · ·) affects the object
itself, so all references to it are immediately affected; no need to
update each reference. The object’s new class is a subclass of its
old, so that the object can still accept and process any message it
could previously accept; and it can now also accept and process
messages added by the interface of its specific new class.

This solution requires no delegation, and no new object is in-
troduced into the system. There is also no need for an awkward
inflation of the interface of the superclass Node, and type safety is
maintained; e.g., if a Node is evolved into a Head, it has no getText

method, and any attempt to use such a method will fail at compile-
time.

2.2.1 Representing Knowledge Refinement
An important special case of lazy data structures are systems in

which knowledge increases over time, and the increase in knowl-
edge allows us to replace a general class with a specific subclass.
As a concrete example, consider the classes used to represent the
abstract syntax tree (AST) data structure in a compiler implemen-
tation. A top-level class, MethodInvocation, can be used to rep-
resent the general notion of an invocation expression, whereas its
subclasses represent specific invocation types, e.g., StaticMeth-
odInvocation for static method calls, DynamicMethodInvocation

for ordinary calls, InterfaceMethodInvocation, etc. Each of these
subclasses is a specific, refined version of the superclass.

In many compiler designs, the parser generates an AST from the
source code; the back-end then processes this tree. Often, the parser
does not have the knowledge required for classifying a given AST
node at its most refined representation level; e.g., given the source
fragment “x.m()” in a JAVA program, the parser will generate a Me-
thodInvocation node. The back-end will then replace this node
with a more specific node, such as InterfaceMethodInvocation,
based on data obtained from the symbol table regarding x’s type and
the declaration of method m in that type. The change is a refinement
based on gathered knowledge.

Just as with lazy data structures, a refinement entails either (a)
the creation of a new node object to replace the old one, or (b)
representing all possible options in the top-level class (MethodIn-
vocation in this example). As in the case of DOM tree nodes,
the first option implies that the AST data structure must prevent
the reference to the raw type from leaking; all references must be
meticulously tracked, and replaced when the object is refined. The
second option implies that the top-level class must contain knowl-
edge about all possible refinement options. This contradicts modu-
lar design and complicates future expansions.

With object evolution, refinement is represented as the object

sliding down the inheritance tree to a state that represents our new,
refined knowledge about it. All references are immediately up-
dated, while the program design remains completely modular.

3. OBJECT EVOLUTION
An object evolution operation replaces, at runtime, the type of

an object with the type of a selected subclass. As the target type is
always a subclass of the current type, the set of class members is
either unchanged or enlarged, i.e., the change is monotonic. Since
no member is removed by the operation, we have a guarantee that
any message understood by the object prior to the evolution oper-
ation is understood after the operation as well, thereby ensuring
type safety after the evolution occurred.

The action of object evolution is executed on a particular refer-
ence to the object, but it affects the object itself. All references to
the object, including fields, local variables, etc. now reference the
evolved object. Evolution is therefore transparent to aliasing.

Evolution is written using the syntax v → C(· · ·), meaning the
object referenced by variable v is evolved (using the → operator)
to an instance of class C. (The→ operator can be written as “->”.)
The parenthesis will often be empty, i.e., v → C(); however, the
evolution process may accept parameters, as described below.

For example, consider the lazy tree evaluation scenario discussed
above, and in particular the class hierarchy presented in Fig. 2.4.
Given the variable definition and initializations

Node n1 = new Node(· · ·); Node alias1 = n1;

we can now evolve n1 into any subclass of Node; e.g., n1→Head()

will evolve the object referenced by both n1 and alias1 from an
instance of class Node to an instance of its indirect subclass Head.

The evolution expression, n1→Head(), returns a value; this value
is a reference to the same object (i.e., it equals n1), but its static
type is the target class, head. We can thus store the result in a new
variable that will allow us to access defined in class Head, or its su-
perclass Element, as in:

Head h1 = n1→Head();
Attributes attr = h1.getAttributes();

Variables h1 and n1 now refer to the same object, so the test h1 == n1

will yield true. However, their static type is different, so getAttribute()

cannot be applied directly to n1 (see Fig. 3.1).

Figure 3.1 An example of the effect of evolution on references to the object.
The static type of references does not change; however, they can be down-
casted to the new type.

1 Node n = new Node(· · ·);
2 Node alias = n;

4 if (someCondition()) {
5 n.getAttributes(); // Compile-time error
6 ((Head)n).getAttributes(); // Run-time error
7 Head h = n→Head();
8 if (h == n) { ... } // Condition holds
9 n.getAttributes(); // Compile-time error

10 h.getAttributes(); // Will succeed
11 ((Head)n).getAttributes(); // Will succeed
12 ((Head)alias).getAttributes(); // Will succeed
13 }

15 ((Head)n).getAttributes(); // Downcast might fail at runtime

3.1 Evolvers: Maintaining Class Invariants
The object evolution operation takes an instance of one class and

mutates it into an instance of another. Yet simply adding new fields
and methods is not sufficient. Consider an object v of type C0 that
undergoes an evolution process, v → C(· · ·). The object state,
which initially satisfies the class invariants of C0, must now sat-

isfy C’s invariants.2

Standard objects of class C go through an orderly construction
process, which ensures that class invariants are satisfied. In par-
ticular, the constructor begins by invoking an inherited constructor
(using the keyword super in JAVA3); after the inherited construc-
tor returns, the invariants of the superclass C0 are satisfied, and
the rest of the constructor body must ensure that the additional in-
variants introduced in C are also satisfied. But object v had only
gone through the C0 construction process. We therefore conclude
that object evolution must allow the mutating object to execute any
required code in order to meet the invariants of its target class.

To this end, we define evolvers, which are constructor-like class
members executed upon evolution. Syntactically, an evolver for
class C is named →C (whereas a constructor is named C). For ex-
ample, an evolver defined in class Head must be called→Head. Like
constructors, evolvers have no return type. Also like constructors,
evolvers can be overloaded; the parameters (· · ·) passed to the evo-
lution operation v → C(· · ·) dictate which evolver will be used.

Unlike constructors, evolvers do not begin by calling an inherited
version. When the evolver begins its execution, the current object
(this) is an instance of the class C, which does not yet satisfy its
class invariants; it only satisfies the invariants of its superclass C0.
This is similar to the state of the object in the constructor, right after
the call to super(· · ·) is completed. It is therefore the evolver’s role
to initialize the newly acquired fields, possibly based on the values
of the inherited fields, so that all invariants are satisfied.

For a concrete example, consider Fig. 3.2, showing an imple-
mentation of class Head which contains a field named title.

Figure 3.2 A class with an explicit evolver (line 8). This evolver will be
used when an object is evolved from the superclass Entity to class Head,
ensuring that the added fields are properly initialized.

1 class Head extends Entity {
2 private String title = null;

4 public Head() { // Constructor
5 super(); // Call superclass constructor (could also be implicit)
6 initTitle(); }

8 public →Head() { initTitle(); } // Evolver

10 private void initTitle() {
11 // Parse the node’s content and set title accordingly
12 Node t = findSubElementByName("title");
13 if (t != null) title = t.getTextContent(); }

15 // ... rest of the class not shown

The implicit invariant of this class is that field title must be set
by the <title> sub-element of <head>, or null if no <title> node
exists. To preserve this invariant, both the constructor (lines 4–
6) and the evolver (line 8) use the private method initTitle to
initialize the field title. As we shall see, such code duplication
can be avoided using default evolvers.

The body of an evolver could be different from that of the con-
structor. In particular, the constructor can make certain assump-
tions about the state of fields inherited from the superclass; it knows
for certain that the superclass was only just constructed itself. An
evolver, however, can execute long after the superclass instance was
created, and the state of the inherited fields can vary from what it
was after construction. The only valid assumption for the evolver is
that the superclass fields maintain the superclass’s class invariants.
2The invariants of a subclass are always additions to those of the superclass; see the
invariant inheritance rule, [22, p.465]. Note that while JAVA classes do not have in-
variants specified explicitly in code, they almost always have implicit conceptual in-
variants, often made explicit in the documentation.
3Or the keyword this, which delegates to a different constructor in the same class.
Still, at the end of the delegation chain there must reside a constructor that begins with
a call to super(· · ·).

Classes in JAVA that define no constructor obtain a default con-
structor, generated by the compiler; this constructor merely invokes
super(). In a similar manner, classes that define no evolver obtain
one or more default evolvers. For every constructor that begins
with a parameter-less call to super(), (directly or, by a chain of
this(· · ·) calls, indirectly), a default evolver is generated. Each
default evolver accepts the same parameters as the constructor that
triggered its synthesis, and shares the same body, except the call to
super(). The visibility level (private, public, etc.) is also shared.

Default evolvers makes it possible to remove line 8 (the evolver
definition) from Fig. 3.2; an identical default evolver would be au-
tomatically generated. This also means that, in the same figure, the
title initialization code could be inlined as part of the constructor
itself, rather than presented as a private method.4

If no default evolvers can be generated (because all constructors
call super(· · ·) with one or more parameters), then the class must
define explicit evolvers if it is to serve as an evolution target.

3.1.1 Evolution Steps
In the DOM tree example, class Head extends class Element,

which extends Node, which in turn extends Object (Fig. 2.4). There-
fore, whenever a new instance of Head is created, the constructor
first invokes the constructor of Element, which first invokes that of
Node, etc. We have that the construction process always begins at
the topmost level (Object) and progresses down in the inheritance
tree towards the actual type (e.g., Head), with each step initializing
its own fields and ensuring that its own invariants are maintained.

When an object is evolved, some nonempty prefix of this initial-
ization chain had already occurred (at the very least, the Object

constructor was executed). The evolution process must now ensure
that the remaining tail is executed. Therefore, given the inheritance
chain Cn ≺ Cn−1 ≺ . . . ≺ C1 ≺ C0, when object v is evolved
from class C0 to class Cn, it is not only the evolver of Cn that
executes; the evolver of every class residing between the two in
the inheritance tree runs first: →C1, followed by →C2, etc. These
are implicit evolution steps. Because v’s position in the inheritance
chain (its dynamic type) is known only at runtime, the required im-
plicit evolution steps are also known only at runtime. Only the final,
explicitly named evolver →Cn is guaranteed to take place when an
object is successfully evolved to type Cn.

For example, when an instance of Node is evolved into an in-
stance of Head, the evolver →Element runs first (an implicit step),
followed by →Head. This completes the initialization chain for a
proper instance of Head.

We have seen that the evolution step might accept parameters.
When the statement v → Cn(p1, . . . , pk) is executed (assum-
ing v’s current type is C0), the parameters p1, . . . , pk are passed
to the evolver →Cn. For other evolvers in the chain between C0

and Cn, a parameter-less evolver is used.
If an interim step in the evolution chain, →Ci for some i ∈

{1 . . . n−1}, has no zero-parameters evolver, the parameter-requiring
steps cannot be implicit, and v may not be directly evolved to Cn. It
must first be evolved to the interim step Ci, passing parameter(s) to
one of Ci’s evolvers; only then can it be evolved to Cn. If there are
multiple such parameter-requiring steps in the chain between C0

and Cn, then multiple explicit steps must be used.
Consider for example the trio of classes defined in Fig. 3.3. Given

the variable declaration and initialization A v = new A(0), the evo-
lution statement v→C(2) will fail to compile, since v must first be
4In rare situations, where the cosntructor initialization sequence depends on work
done by the inherited constructors in non-obvious ways, subtle bugs may ensue. This
concern may be addressed by limiting default evolver generator to specifically-tagged
(annotated) constructors.

evolved into an instance of B before it can become an instance of C,
and this interim stage requires its own parameter. We must there-
fore use two explicit stages, as in v→B(1)→C(2);. (This isn’t a
special syntax; we’re simply taking advantage of the evolution ex-
pression’s return value.)

Figure 3.3 An inheritance chain where each step requires an additional con-
struction/evolution argument. Because the evolution from A to B cannot be
implicit, an object cannot be directly evolved from A to C (an interim step
must be explicitly used).

class A {
int a;
public A(int a) { this.a = a; } }

class B extends A {
int b;
public B(int a,int b) { super(a); this.b=b; }
public →B(int b) { this.b = b; } }

class C extends B {
int c;
public C(int a,int b,int c) { super(a,b); this.c=c; }
public →C(int c) { this.c=c; } }

3.2 Evolution Failures
All three approaches presented above integrate with the static

type system. Once an object has evolved, it assumes a new class,
and it will never be the case that an object receives a message it
cannot deal with.

However, in certain circumstances that cannot be statically de-
termined, the evolution operation itself might fail. Such cases are
called evolution failures.

Thus, with regard to type safety, object evolution can be likened
to a downcast operation: The operation itself might fail, but once
completed successfully, the reference or object can be safely ac-
cessed using its newly-assumed class.

Two possible failures are common to all approaches. The most
trivial failure occurs when the reference to the object to be evolved
happens to be null at runtime. The other common possible cause
for failure is when the evolver throws an exception (just as a con-
structor may throw an exception, making new fail).5

Beyond these shared causes, each of the three approaches entails
its own set of possible causes for failure.

In the I-Evolution operation v → C(· · ·), the evolution target C
must be a subclass of v’s type. Herein lies a risk of evolution fail-
ure, since while C can be verified to be a subclass of v’s static type,
we cannot verify in advance that it is also a subclass of v’s dynamic
type. For example, we may try to evolve an object of static type
Pet to type Dog, but if the object’s runtime type is Cat (a different
subclass of Pet), this evolution attempt will fail.

The target of the M-Evolution operation v → M 〈v〉 (· · ·) is M 〈V 〉,
where V is v’s runtime type. The operation’s target is therefore
necessarily a subclass of v’s dynamic type, avoiding the risk pre-
sented by I-Evolution operations. The risk is further reduced by
defining the concept of idempotent mixins, i.e., mixins that can be
repeatedly applied to a class with no adverse effect. However, M-
Evolution can still fail if mixin M cannot be applied to V for one
of two reasons: If V is a final class, or if the application results
in accidental overriding [2] (i.e., a mixin which introduces a new
method m() is applied to a class that happens to have a method m()

of its own, which the mixin is not meant to override).
Finally, because it only offers trivial monotonicity, S-Evolution

is the least susceptible to failure. Like M-Evolution, S-Evolution
5It is possible to prevent evolution into some specific class by providing an evolver
that unconditionally throws an exception. However, a simpler solution is declaring a
private evolver.

selects the target class based on the evolving object’s dynamic type,
thereby avoiding the risk faced by I-Evolution.

Unlike mixins, shakeins are immune from accidental overrid-
ing, because they can only override existing methods or introduce
private ones. Thus, S-Evolution can only fail when a shakein is
applied to a an object whose dynamic type is final.

4. THE THREE KINDS OF EVOLUTION

4.1 I-Evolution: Using the Inheritance Tree
The most straightforward of the three approaches, I-Evolution

allows an object v of static type C to evolve into any subclass of C.
If C is an interface, then v can be evolved into any class that
implements it.

The examples presented so far were all based on I-Evolution. I-
Evolution’s main limitation lies with its simplicity: change must be
down a pre-determined path, i.e., it can only propagate down the
statically-defined inheritance tree. In the TCP connection example
(Sec. 2.1), once a connection object reaches the closed state, it is
in what we may metaphorically term “an evolutionary dead-end”;
it can no longer change its state. To represent a fresh connection,
a new TCPConnection object must be created. We shall later use
S-Evolution to overcome this limitation in this case and others.

4.1.1 Evolution to Mixin-Generated Classes
The target of an I-Evolution operation can be any class; in par-

ticular, it can be a class generated using a mixin. As an example,
consider the mixin Blocked (Fig. 4.1).6

Figure 4.1 A mixin for creating immutable List classes.

mixin Blocked {
inherited public void add(Object o);
inherited public void remove(int index);

@Override public final void add(Object s) {
throw new UnsupportedOperationException(); }

@Override public final void remove(int index) {
throw new UnsupportedOperationException(); }

// ... etc.− List has many more methods to override...
}

This mixin can be applied to classes that implement JAVA’s stan-
dard interface List. The result is a list that cannot be modified,
since any attempt to add or remove objects will yield an exception.

Using OE, list objects can be evolved into blocked-list objects at
any stage of their life. For example, the following code can be used:

List myList = new Vector();
myList.add(· · ·); // add numerous data items
myList→Blocked<Vector>();

Here, applying the mixin to class Vector generates a new class that
refuses to add or remove items. Once the evolution completes, no
client that holds a reference to this list object will be able to alter its
content. There are many uses to this capability, including security
considerations and improved performance for defensive program-
ming [4, #39] (since there is no need to create a copy of the list).7

4.2 M-Evolution: Better Use of Mixins
M-Evolution is a variant of object evolution, where the target of

any evolution statement is the result of applying a mixin to the run-
time type of an object. An M-Evolution statement for variable v
6We use the syntax of JAM for defining mixins in our JAVA-like language; yet for
consistency, the application of mixins is expressed using a generics-like syntax.
7It is for these security considerations that the methods in mixin Blocked were de-
fined as final—to prevent the application of a reverse mixin, “Unblock”.

uses the syntax v → M 〈v〉 (· · ·), where M is a mixin. The oper-
ation selects M 〈V 〉 as its target, where V is v’s runtime type. If
class M 〈V 〉 did not previously exist, the evolution operation will
cause it to be generated, at runtime. M-Evolution therefore avoids
the “evolutionary dead-end” limitation of I-Evolution by dynami-
cally extending the inheritance tree.

To understand the usefulness of the concept, consider Blocked

(Fig. 4.1) again. While it can be used to generate a subclass of any
class that implements List, it is hardly useful in a context where all
we have is an instance whose static type is List, and its dynamic
type unknown. This is a common case, e.g., with methods that ac-
cept a List reference as a parameter. Should such a method wish to
evolve its parameter to an immutable object using Blocked, it can
try to evolve it into Blocked<ArrayList>, Blocked<Vector>, or any
of numerous other combinations—the code would look like this:
public void blockParam(List lst) {

if (lst instanceof Vector)
lst→Blocked<Vector>(); // Attempt I−Evolution

else if (lst instanceof ArrayList)
lst→Blocked<ArrayList>(); // Another I−Evolution attempt

else // ... etc.
else throw new Exception("Unknown List impl.");

}

However, no branch in the code is guaranteed to succeed, since the
total number of classes that implement List is unbounded. The so-
lution is to apply a mixin to the runtime type of the object, using
M-Evolution:
public void blockParam(List lst) { lst→Blocked<lst>(); }

Here, mixin Blocked accepts as a parameter not a type, but a vari-
able; it generates a new class, at runtime, based on that variable’s
dynamic type. The resulting type of the variable after the evolution
statement can be e.g., Blocked<Stack>, Blocked<Vector>, etc.

4.2.1 M-Evolution and Idempotent Mixins
A moment’s reflection will reveal that the M-Evolution statement

in the code above can never fail, except in certain rare scenarios
(when the object’s runtime type is a final class, or if accidental
overloading ensues; see Sec. 3.2). In most cases evolution will
succeed since no matter where in the inheritance tree does the vari-
able’s runtime class reside, it can evolve downwards. There is no
dead-end to reach, as the inheritance tree can be expanded at run-
time. In particular, even if the type is already the result of applying
the Blocked mixin, it can further evolve; the type can change, e.g.,
from class Blocked<Vector> to class Blocked<Blocked<Vector>>.
No complication is introduced by the repeated application of the
mixin, since it is idempotent.

Our next example is based on the classic mixin Undo (Fig. 4.2).

Figure 4.2 A sample mixin, which adds an undo method to classes that
have a getText and setText methods. (Based on [2, Fig.1]).

@Idempotent public mixin Undo {
inherited public String getText();
inherited public void setText(String s);

private String lastText;

@Override public void setText(String s) {
lastText = getText(); super.setText(s); }

public void undo() { setText(lastText); }
}

Mixin Undo can be applied to any class that features the two
methods getText and setText, such as the standard-library class
JButton. The ability to repeatedly apply Undo (generating, e.g.,
Undo<Undo<JButton>>) with no adverse effect is less obvious, since
every such application alters the memory footprint of each instance
(by adding a new lastText field). Also, every repeated applica-

tion will add a new invocation to the chain of operations that im-
plement setText. However, other than by means of performance
measurement, external clients have no way to tell an instance of
Undo<Undo<JButton>> from an instance of Undo<JButton>; the be-
havior remains identical. We therefore maintain that this mixin
is also idempotent, and mark this in the source code using the
@Idempotent annotation.

We say that a mixin is idempotent if:

1. It is annotated using @Idempotent (e.g., Undo), or
2. It meets both of the following criteria (e.g., Blocked):

(a) All (if any) introduced members (fields or methods) are
private.

(b) Any method that it overrides is replaced rather than re-
fined (i.e., the new method body does not call the inher-
ited version using super).

Given an idempotent mixin MI and arbitrary type T , the runtime
system will always provide MI 〈T 〉 when MI 〈MI 〈T 〉〉 is req-
uested. This approach prevents the creation of unnecessarily long
“threads” in the inheritance tree, that might result from the repeated
application of a single idempotent mixin to the same object.

4.3 S-Evolution: Evolving with Shakeins

4.3.1 A Brief Overview of Shakeins
Shakeins [8] are a programming construct that, like mixins, gen-

erates a new class from a given class parameter. However, unlike
a mixin, a shakein does not generate a new type. Given shakein S
and class C, the shakein application S 〈C〉 represents a new class
but not a new type.

Shakeins can thus be viewed as type re-implementors: A shakein
can be used in object construction expressions, but one cannot de-
fine variables of type S 〈C〉. Since they share the same type, the set
of externally-accessible members of S 〈C〉 is identical to that of C.

Shakeins can use pointcut expressions and advice [21] to se-
lectively generate new implementations of methods in the original
class. They can therefore be used much like aspects for addressing
the problem of scattered and tangled code.

Figure 4.3 A shakein that generates a transactional implementation of a
class.

1@Idempotent public shakein Transactional {
2 pointcut publicMethod := public ?*(*);

4 around: publicMethod {
5 Transaction tx = Session.getTransaction();
6 Object result;
7 try {
8 tx.begin();
9 result = proceed; // Invoke the original impl. of the current method

10 tx.commit();
11 } catch (Exception e) { tx.rollback(); }

13 return result;
14 }
15}

For example, applying the shakein Transactional (Fig. 4.3) to
class C generates a new version of C, in which every public method
is enveloped in a database transaction. If the original method invo-
cation (line 9) is successful, the transaction is committed (line 10);
otherwise, it is aborted (line 11).

Another example of a shakein is ReadOnly, from Fig. 4.4. When
applied to any class, this shakein silently blocks all calls to setter
methods—void methods with names that begin with set, followed
by an uppercase letter—that accept a single parameter. Setters are
matched by the pointcut expression in line 2. The around advice
(line 4) then re-implements each setter as a no-action method.

Figure 4.4 The ReadOnly shakein blocks all setter methods.

1 @Idempotent public shakein ReadOnly {
2 pointcut setter := void set[A-Z]?*(_);

4 around: setter { return; }
5 // Block silently; do not invoke original version
6 }

By writing ReadOnly<JButton>, we obtain a read-only version
of the JButton class, where methods setText, setIcon, etc. will
all be replaced. While a mixin could be used to reach the same
effect, the mixin will necessarily be longer, explicitly overriding
each setter method. Also, the mixin will be highly specific to the
JButton class. To create a similar subclass of JCheckBox, a new
mixin will be required, specific to that class; whereas with the Read-
Only shakein, we can simply write ReadOnly<JCheckBox>.

Thus shakeins, unlike mixins, are more flexible, since they are
sensitive to their parameter. Unlike a mixin, however, a shakein
may not introduce new members to its argument (except for private
members). For example, a mixin like Undo (Fig. 4.2), which intro-
duces the public method undo, cannot be created using a shakein.8

For all classes C1 and C2 so that C2 ≺ C1 (i.e., the type of C2

is a subtype of C1), and for arbitrary shakeins S and S′, we have
that S′ 〈C2〉 ≺ S 〈C1〉. For example, if class LimitedAccount is a
subclass of Account, then the type of Transactional<LimitedAcc-
ount> is a subtype of Transactional<Account>’s type. Fig. 4.5
makes a graphical illustration of this fact. It depicts a simple base
class hierarchy consisting of classes C1 . . . C4, where C4 ≺ C2 ≺
C1, and C3 ≺ C1. There are also three shakeins, Sa, Sb and Sc,
where shakeins Sb and Sc are implemented using Sa, and each of
the shakeins is applied to each of the classes. We see that the type

Figure 4.5 A class hierarchy subjected to shakeins (from [8]). Each round-
cornered box represents a single type; internal boxes represent different
implementations of each type.

C1
C2
C4

C3
Sc<C1>Sb<C1>

Sc<C2>Sb<C2>
Sc<C4>Sa<C4>

Sa<C2> Sa<C3>Sa<C3>
Sa<C4>

Type C1
Type C2 Type C3

Type C4

Sa<C1>
Sb<C3>Sb<C3>Sc<C3>Sc<C3>

of class Ci (i = 1, . . . , 4), is the same as its three re-implementa-
tions Sa 〈Ci〉, Sb 〈Ci〉 and Sc 〈Ci〉. This common type is denoted
by a round-cornered box labeled “Type Ci”. As shown in the figure,
the subtyping relationship is not changed by re-implementations;
e.g., the type of class Sa 〈C4〉 is a subtype of Sb 〈C2〉’s type.

4.3.2 Shakeins and Object Evolution
S-Evolution is a variant of object evolution, where the target of

any evolution statement is the result of applying a shakein to the
runtime type of an object. An S-Evolution statement for variable v
uses the syntax v → S 〈v〉 (· · ·), where S is a shakein.
8 The private members introduced by a shakin may include data fields. See [8] for a
detailed discussion of the implications of repeatedly applying shakeins in such cases.

Much like M-Evolution, S-Evolution extends the inheritance tree
as needed at runtime, and therefore cannot fail due to inheritance
dead-ends. Also like M-Evolution, shakeins can be marked idem-
potent (as was the shakein ReadOnly), making their repeated appli-
cation a “fail-safe” operation. And, because shakeins cannot intro-
duce new non-private class members, they are not susceptible to
failure by accidental overriding.

4.3.3 Shakein State-Groups
Shakeins and S-Evolution can substitute the STATE design pat-

tern, since in this pattern, all state classes implement the same inter-
face. For example, state classes TCPListen, TCPEstablished, and
TCPClosed all implement the interface defined by the abstract class
TCPState (Fig. 2.1); we have a set of classes that share the same
type. Such sets can also be generated by applying different shakeins
to the same base class; each round-cornered box labeled “Type Ci”
in Fig. 4.5 presents an example.

We define a state-group of shakeins as a set of shakeins that share
the @StateGroup annotation, with the same string parameter; differ-
ent, independent state-groups can be created using different string
parameters. For example, the three shakeins in Fig. 4.6 form the
state-group "Connection".

Figure 4.6 A shakeins state-group for generating the various state classes
of TCPConnection. This provides a full replacement to the STATE pattern,
because there is no limit to the number and type of state changes (cf. the
limited I-Evolution version in Fig. 2.2).

1@StateGroup("Connection") public shakein Listen {
2 public void open() { ...; this→Established<this>(); }
3 public void close() { this→Closed<this>(); }
4 public void acknowledge() { ... }
5}

7@StateGroup("Connection") public shakein Established {
8 public void open() { /∗ ignore ∗/ }
9 public void close() { this→Closed<this>(); }

10 public void acknowledge() { ... }
11}

13@StateGroup("Connection") public shakein Closed {
14 public void open() { throw new IllegalStateEx(); }
15 public void close() { throw new IllegalStateEx(); }
16 public void acknowledge() { ... }
17}

The compiler enforces the limitation that all shakeins in a given
state-group must define the same set of private class members.9

In the example, this requirement is met vacuously.
Shakeins in the same state-group are mutually exclusive, mean-

ing that if C is a class, and shakeins S1 and S2 are in the same
state-group, the application of S1 to S2 〈C〉 yields S1 〈C〉, rather
than S1 〈S2 〈C〉〉. Such an application is called a state transition.10

When applied to class TCPConnection from Fig. 2.2, the three
shakeins from Fig. 4.6, generate the state subclasses. For exam-
ple, Established<TCPConnection> is equivalent to class TCPCon-
nectionEstablished (from Fig. 2.2), etc. These shakeins capture
the increment between TCPConnection and each of its subclasses,
but use S-Evolution statements (lines 2, 3 and 9).

This state-group can overcome the inability of the I-Evolution-
based solution to retract its steps. Given a connection in the “closed”
state, we can now change its state back to “listen” by applying
the Listen shakein to its dynamic type. Doing so will change the
9Shakeins can never introduce non-private class members, since they may not
change the base class’s type.

10While state transition is not, strictly speaking, a move down the inheritance tree, it is
still a form of object evolution, because conceptually the new state could be defined as
a subclass (but not a subtype) of the old one. The fact that it is not a subclass is a means
for avoiding needlessly long inheritance “threads”. We use the term “transition” only
for this special form of S-Evolution.

object’s type from Closed<TCPConnection> to Listen<TCPConnec-
tion>. There is no limit on the number of times the state can be
changed by re-applying the appropriate shakein; and these changes
do not generate an inheritance tree of unbounded depth.

Transitions within a state-group are type safe, because the type
of a shakein-applied object, S1 〈C〉, is identical to that of S2 〈C〉,
and to that of C itself. Shakein S2 〈C〉 recognizes all messages
that S1 〈C〉 recognized (and vice versa). The only fine point is
the type of this in methods overridden by the shakein application.
Such methods may call private methods, or access private data
members, defined in S1. Hence the requirement that all shakeins in
a state-group include the exact same set of private members.

The trivial case of a state-group with only a single shakein (or
mixin) is in fact equivalent to an idempotent shakein; given such a
shakein SI , applying it to SI 〈C〉 yields SI 〈C〉. However, state-
groups with more than one member can only be defined for shakeins,
and not for mixins, because the mixin type itself can be used to de-
fine variables. For example, had the three shakeins from Fig. 4.6
been created as a set of mixins, then some code could have defined
a variable of these types, as in:

Established e = new Established<TCPConnection>();

Now, by the definition of evolution within state-groups, evolving
the object to mark a closed connection would change its type to
Closed<TCPConnection>; yet the variable e cannot refer to such an
object. The problem is never encountered with shakeins, since no
variables (or fields, etc.) of shakein types are possible.

4.3.4 Objects with Multiple States
Multiple shakeins can be applied to a single object. E.g., given

state-group S with states S1 and S2, and state-group R with R1

and R2, one can create classes such as S1 〈R1 〈C〉〉, R2 〈S1 〈C〉〉,
etc., depending on the shakeins used and the order of application.

What happens when we apply R2 to an instance of S1 〈R1 〈C〉〉?
There are four possible semantics for handling such cases:

1. Error semantics. Applying R2 results in a runtime error.
2. Accumulation semantics. The result is R2 〈S1 〈R1C〉〉, i.e.,

the new shakein is added to the object and does not replace
the old shakein from its group (no state transition takes place).

3. Order-preserving semantics. The result is S1 〈R2 〈C〉〉, i.e.,
the state-transition preserves the order in which shakeins from
the different state-groups were originally applied.

4. Re-ordering semantics. The result is R2 〈S1 〈C〉〉, i.e., the
state-transition re-orders the shakeins applied to the object.

Accumulation semantics implies that the application results in
an object which is simultaneously in states R2 and R1; this situ-
ation is not desired since R2 and R1 belong to the same group,
which usually implies that they are mutually exclusive. We there-
fore eliminate this option.

Assuming we’re not interested in error semantics, the principle
of least surprise dictates that re-ordering semantics is preferable.
Having a previously-applied shakein take precedence over the most
recently-applied one (as in the case of order-preserving semantics)
can lead to awkward situations. E.g., if shakein R2 is ReadOnly

(Fig. 4.4), failure to take precedence implies that applying ReadOn-
ly to an object might yield a non-read-only object. Conversely, it
does make sense that applying some shakein S to a read-only object
might make that object mutable, depending on the nature of S.

4.3.5 Shakeins as Dynamic Aspects
Previous work [7, 8] introduced shakeins as a more organized,

parameterized alternative to aspects. As noted before, a shakein can

apply advice (before, after or around) to methods of the inherited
class, yielding a new implementation of the base class’s type with-
out changing the class itself. One example is the Transactional

shakein presented above (Fig. 4.3). Another example is the shakein
Log from Fig. 4.7, which can be used as a logging aspect.

Figure 4.7 A logging aspect (shakein) and it’s canceling counterpart. These
can be applied to objects alternatively, and so they act as a dynamic aspect.

@StateGroup("Log") public shakein Log[String filename] {
pointcut publicMethod = public (*);

before: publicMethod {
FileOutputStream fos = new FileOutputStream(filename);
// ... log the operation to the file ...

}
}

@StateGroup("Log") public shakein NoLog { /∗ empty ∗/ }

Log accepts a string parameter, which is the filename to which
the log will be written. Logging objects can be created using state-
ments like: List verboseList = new Log["my.log"]<Vector>();.
Following this, any access to a public method of the verboseList

object will be logged in the specified file.
With object evolution, we can dynamically apply this aspect to

existing objects. E.g., a method that accepts some parameter lst of
type List can issue the statement lst→Log["system.log"]<lst>()

and evolve the list into a logging list.
The use of state-groups allows the dynamic aspect to be removed,

given an empty shakein from the same group: lst→NoLog<lst>()

(shakein NoLog is an empty shakein, defined in Fig. 4.7).

5. IMPLEMENTING OBJECT EVOLUTION
The key problem with implementing object evolution is the need

to increase the memory footprint of an object already on the heap,
as new data members are added. Possible solutions include:

1. Using object handles. Certain GC-supporting systems (e.g.,
GILGUL’s VM [9]) store, in each reference variable, a pointer
to a forwarding pointer, or handle, rather than a direct pointer.
The handle itself is never moved, but it can be modified if the
object is re-located in memory. This can be used to imple-
ment evolution—if the target class introduces new fields, the
object can be moved to a newly-allocated address.

2. Compacting evolution. With this solution, every evolution
operation forces a complete GC run, including memory com-
paction. Since compaction supports moving objects around
memory, the evolving object can be assigned a new location
with sufficient space for its new class.

3. Old objects as proxies. Here, we introduce a new field to
java.lang.Object. This field, denoted newRef, is null by
default; any other value indicates that the object had evolved,
and v.newRef is a reference to v’s new address. Any attempt
to operate on an object with a non-null newRef is forwarded;
i.e., the old object acts as a proxy to the new one.

Each solution represents different performance tradeoffs. For ex-
ample, compacting evolution would be ideal if evolution operations
are rare: each evolution is costly, but there is zero overhead to all
other operations. Choosing the optimal solution requires empirical
data about the frequency and type of evolution operations that are
common in programs. Such data will also enable fine-tuning of so-
lutions (e.g., for evolution operations that take place inside loops).

Our own implementation11 uses proxy objects. It is based on a
JAVA agent which patches classes at load-time; neither the JVM nor

11http://ssdl-wiki.cs.technion.ac.il/wiki/index.php/Object_Evolution

the library were modified. The code demonstrates a few possible
optimizations for proxy-based implementations.

6. CONCLUSIONS AND RELATED WORK
This paper propounded the inclusion of object evolution mech-

anisms into mainstream programming languages, and in particular
JAVA. We showed how OE integrates well with inheritance, and
with the less popular mechanisms of mixins and shakeins. It is also
thread safe.12 Our language design decisions favored type-safety,
but in respect of practical concerns, not with as much zeal as other
approaches to reclassification. Specifically, our proposal does not
provide a compile time guarantee that all evolution operations are
successful. To our knowledge, this is the first attempt to reconcile in
this manner the conflicting just purposes of type-safety, reclassifi-
cation flexibility and practical concerns. In this section we compare
our approach with previous work.

Monotonic Reclassification. The idea of improving the type
safety of reclassification by making the changes monotonic dates
back to Beck’s Scriptable Objects [3]. Scriptable Objects are (triv-
ially) monotonic since, like shakeins, they do not change the ob-
ject’s interface. But they are not as general as shakeins, in that a
shakein is applicable to multiple classes.

Object extension [15,17] includes non-trivial monotonic changes,
(self-inflicted extension). With no template serving as the object’s
new class, only the object’s own methods can access any newly
introduced method or data member (if we use a static type system).

Ghelli [15] suggested a calculus in which “incompatible changes”
cannot occur, by letting the same object assume different roles in
different contexts. His work is done in the context of Fibonacci [1],
a DB language. Roles are more natural to OODBs than to OO
programming languages, since the notion of a dynamic type of an
object may conflict with the “role” imposed on it.

Systems that do offer non-monotonic, type-safe object reclassifi-
cation restrict the choice of objects that can be reclassified, and the
range of reclassification target classes. In Serrano’s wide classes
system [25], objects can only be widened to instances of wide sub-
classes of their current class. In other words, what we call evolution
is restricted to a pre-designated set of subclasses. Conversely, only
wide objects can be shrunk. The ability to shrink objects implies
that the system cannot be used in statically-typed languages.

The Work on FICKLE. The FICKLE language (and its newer
versions) are more general than evolution, since they allow non-
monotonic reclassification. However, reclassification in FICKLE is
restricted in the sense that only instances of designated root classes
can be reclassified, and the destination class must be a pre-designated
state subclass of the root class. To maintain static typing, the FICKLE
type system must track the effect of each method, namely the list
of classes whose instances may be reclassified (directly or indi-
rectly) by the method; the programmer is requested to annotate
each method with the list of reclassification changes it may make.
Additionally, state classes cannot be used to define variables, al-
though this restriction was somewhat eased in FICKLEII.

The set of classes composed of a root class and its state sub-
classes in FICKLE can be compared to a class and the set of re-
implementations that can be derived from it using a shakein state
group. In both cases, objects can be reclassified freely inside the
group. Also, to maintain type safety, in both cases there are restric-
tions on using the non-root classes as types. In FICKLEII, these re-
strictions are relaxed and pertain to fields only, whereas in our sys-
tem they are absolute. Most importantly, FICKLE is strongly-typed,
i.e., the reclassification operation cannot fail. However, shakeins

12See http://ssdl-wiki.cs.technion.ac.il/wiki/index.php/OE_Threads for details.

integrate into the existing type system and do not require tracking
each method’s effect or marking the root class as such. In FICKLE,
any subclass (direct or indirect) of a root class must be a state class,
whereas with shakeins, regular classes, that can have regular sub-
classes, are used as roots. Thus, shakeins can be used to create
a state group from existing classes within a pre-defined hierarchy,
such as the standard library.

In FICKLE3, any object may change its class to any other class.
The implementation, in which any object may be reclassified into
any class, should deal with the need to wrap all objects.

Object Replacement. Related to reclassification and evolution
but different is object replacement, as offered by the GILGUL lan-
guage. GILGUL [9] extends JAVA in allowing a global change of all
references to a certain object, redirecting them to another object.
Static type safety is maintained by the requirement that the type of
the new object must be the same as that of the type of the original
object, or a subtype thereof. Thus, replacement must deal with the
same kind of runtime failures that might occur with I-Evolution.

7. REFERENCES
[1] A. Albano et al. Fibonacci: A programming language for object

databases. The VLDB J., 4(3):403–444, 1995.
[2] D. Ancona et al. Jam–designing a Java extension with mixins. ACM

Trans. on Prog. Lang. Syst., 25(5), 2003.
[3] K. Beck. Instance specific behavior: how and why. The Smalltalk

Report, 2(6):13–15, March-April 1993.
[4] J. Bloch. Effective Java, 2nd Edition. Addison-Wesley, 2008.
[5] G. Bracha and W. R. Cook. Mixin-based inheritance. In

OOPSLA/ECOOP’90.
[6] C. Chambers. Predictable classes. In ECOOP’93.
[7] T. Cohen and J. Gil. AspectJ2EE = AOP+J2EE. In ECOOP’04.
[8] T. Cohen and J. Gil. Shakeins: Non-intrusive aspects for middleware

frameworks. In Trans. AOSD, Nov. 2006.
[9] P. Costanza. Dynamic replacement of active objects in the Gilgul

programming language. In IFIP/ACM Working Conf.
[10] F. Damiani et al. Re-classification and multi-threading: FickleMT. In

SAC’04.
[11] F. Damiani et al. Refined effects for unanticipated object

re-classification: Fickle3 (extended abstract). In ICTCS’03.
[12] S. Drossopoulou et al. Fickle: Dynamic object re-classification. In

ECOOP’01.
[13] S. Drossopoulou et al. More dynamic object re-classification:

FickleII. ACM TOPLAS, March 2002.
[14] E. Gamma et al. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.
[15] G. Ghelli. Foundations for extensible objects with roles. Inf.

Comput., 175(1):50–75, 2002.
[16] G. Ghelli and D. Palmerini. Foundations of extensible objects with

roles (extended abstract). In FOOL’6, 1999.
[17] P. D. Gianantonio et al. A lambda calculus of objects with

self-inflicted extension. In OOPSLA’98.
[18] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its

Implementation. Addison-Wesley, 1983.
[19] Y. Hollander, M. Morley, and A. Noy. The e language: A fresh

separation of concerns. In TOOLS’01 Europe.
[20] P. Kenens el al. An AOP case with static and dynamic aspects. In

ECOOP’98 Workshop Reader.
[21] G. Kiczales et al. An overview of AspectJ. In ECOOP’01.
[22] B. Meyer. Object Oriented Software Construction, 2nd ed.

Prentice-Hall, 1997.
[23] R. Pawlak et al. JAC: An aspect-based distributed dynamic

framework. Soft. - Pract. and Exper., 34(12), 2004.
[24] A. Popovici, T. R. Gross, and G. Alonso. Dynamic weaving for

aspect-oriented programming. In AOSD’02.
[25] M. Serrano. Wide classes. In ECOOP’99.
[26] A. Taivalsaari. Object-oriented programming with modes. J. of OO

Prog., 6(3):25–32, June 1993.

