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Abstract

Self-calibration is a new technique for the study of internal product metrics, sometime called

“observations”, and calibrating these against their frequency, or probability of occurring in common

programming practice. Data gathering and analysis of the distribution of observations is an impor-

tant prerequisite for predicting external qualities, and in particular software complexity. The main

virtue of our technique is that it eliminates the use of absolute values in decision-making, and allows

gauging local values in comparison with a scale computed from a standard and global database. Self-

calibration strongly suggests that transformed metric values should be used for creating composite

metrics. The transformed metrics are normally the log of the direct metric observations, and they are

shown to be more meaningful than the original values.

Borrowing from the discipline of psychology, the research also suggests using method profiles

as a visualizing and analysis technique which can be applied to the study of individual projects or

categories of methods.

While both self-calibration and method profiles are very general and could in principle be applied

to traditional programming languages, the focus of this research is on object-oriented languages using

Java. The techniques are employed in a suite of ten numeric and five categorical metrics in a body of

well over sixty thousand Java methods.
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Chapter 1

Introduction

“Beware! The domain of metrics is deep and muddy waters,” is the first sentence Henderson-Sellers

says on the topic in his book [14]. Indeed, the study of software metrics is one of the most illusive

prospects in software engineering. Meyer [23] enumerates the following qualities as “key concerns”:

correctness, robustness, extendibility, reusability, as well as compatibility, portability, ease of use,

efficiency, timeliness, economy and functionality. These are all external factors, but Meyer clearly

states: “What matters is the external factors, but they can only be achieved through the internal

factors”. The major difficulty is in calibrating, or even correlating, an internal property of a software

system, i.e., an internal metric (sometimes called an observation), against an external property [8],

such as maintainability, by means of a controlled experiment. The vast resources required for even

a single software project precludes running it in a research laboratory setting; the cost to be incurred

in comparing several such projects carried out in more or less equal settings is outright prohibitive.

The difficulties appear even more insurmountable when the focus is shifted from “product” metrics,

i.e., direct measurement of the software, to “process” metrics, i.e., measurement of the process of

producing the software [32].

This research offers a different sort of attack on this Gordian knot. Our approach, which we

may call “self-calibration”, is based on the hypothesis that professional programmers working in a

more or less fixed settings, and in particular using the same programming language, will follow an

implicit common programming practice (CPP). The CPP can be thought of as the shared culture of

programming which is the collective creation of the community of users, educators, and leaders of

a certain programming environment. The scope of the CPP is not defined within a single project or

organization, but rather with respect to a set of widely available specimens of large programs. It refers

to the standard practice and use of the language by recognized leading software manufacturers (such
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as Sun and IBM in the case of the Java programming language) and some of their flagship software

artifacts, instead of the champion programmers within an organization.

In many ways, the CPP is similar to the concept of design patterns [9], in the sense that it captures

the folk-lore of software manufacturing. CPP does not however propound commonly used solutions

to specific recurring programming problems. It is rather the global trend of using language features

in large programming projects.

We believe that the CPP is manifested in the statistical distribution of a wide variety of internal

product metrics. Self-calibration amounts to using statistical methods to identify and analyze these

distributions. The quality of a certain software project can then be evaluated by placing it on the

graphs of distribution of these metrics, and in examining the resulting deviation from the CPP.

In order to understand this better, consider a metric such as the size of a routine. It is clear that

with all other factors being equal, larger routines are more complicated. A calibration question then is

to determine the extent by which an increase in size from 50 units of size (such as lines of code) to 100

units raises the cost of maintainability. The self-calibration method avoids this question by calibrating

the size-metric against its relative frequency. The answer then that self-calibration provides to this

question is of the following sort: “Routines of size 50 are common in this kind of projects, and occur at

frequency of 10%. Doubling the size in this case decreases the frequency to 0.01%.” Such a decrease

in frequency would serve as a warning signal to the user of the method. Thus, in self-calibration, the

interpretation assigned to a certain value of a metric is the frequency at which this value occurs in

practice. That is to say, the probability of finding it in programs which follow the CPP.

1.1 Requirements for Self-Calibration

Two things are required in order to apply self-calibration. First, we must have a suite of numeric met-

rics such as that of Henderson-Sellers [13], Chidamber and Kemerer [5], or Mingins and Avotins [25].

As argued so convincingly by Meyer [24], each of these metrics must have an underlying theory to

justify selecting it from the infinite possible values which can be computed on software. Moreover, it

is also required that theory ascribes a monotonic property to each metric, that an increase in the value

of the metric would always lead to change in the same direction of the desirability of some external

property. For example, there are strong theoretical reasons to believe that an increase in size would

always lead to an increase in complexity.

Not all metrics are monotonic. The number of instance variables in a class is an example of a non-

monotonic metric, since we believe that both too small and too high values are undesirable. When
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values are plotted against their frequency for such non-monotonic metrics, the resulting distribution

graph has a “hump”, indicating that sometimes an increase in value correlates to an improvement in

the external quality metrics, while sometimes a decrease in value is required for the same effect. It is

future research to extend self-calibration to non-monotonic metrics.

Many class-level metrics (such as the number of heirs to a class, the number of methods defined

in a class, etc.) are non-monotonic. Therefore, this study limits its scope to methods, instead of whole

classes. There are also non-monotonic metrics in the scope of methods. For example, the number of

lines of comment per line of code is a non-monotonic metric. We believe that the same is also true

for the number of exception handlers per method; and there are naturally additional examples.

The second requirement for the application of self-calibration is the availability of a large input

set, representative of the CPP, to provide a sound foundation for the statistical analyses. This re-

quirement is hard to meet in languages such as C++ [33], in which the computation of anything but

the most trivial metrics could not be achieved without accurately parsing the source code, which is

largely unavailable in commercial programs. Maughan and Avotins [19] tackled the first aspect of this

predicament in providing a tool-set for obtaining such metrics in Eiffel [21]. However, since Eiffel

does not yet enjoy the wide industrial acceptance it deserves, it cannot be used for self-calibration.

Self-calibration was made possible only with the advent of Java [2] and its bountiful class file for-

mat [15, Chap. 4]. Not only the evaluation of metrics is made technically easier by a direct analysis of

the class file, but it is also possible to collect metrics of commercial software systems. In principle, a

similar approach could have been implemented in other languages relying on P-code [36] execution,

such as Smalltalk [11]. The difficulty is that most P-code representations are impoverished, and in the

case of Smalltalk non-strongly-typed.

1.2 The Benefits of Self-Calibration

The achievements due to the application of the self-calibration technique which we report on here are

multi-fold. First, we were able to identify, with excellent confidence levels, a distinct Mandelbrot-like

distribution pattern common to all numerical metrics used in this research. Each such distribution is

characterized by a single positive constant K , called the metric’s frequency coefficient. Based on the

identification of this distribution law, we argue that for many purposes the logarithm of each metric

is more meaningful than its original value. In particular, we will see that correlation coefficients are

accentuated using these logarithmic values. The constant K can be used for scaling when several

metrics are to be combined into one. This scaling is required before weights can be applied to the
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various metrics.

Based on these finding we are able to borrow from the discipline of psychology a visualization and

analysis technique which is primarily used in personality assessment. The borrowed technique, which

we call method profiles, uses a transformed and normalized coordinate system of numeric metrics to

show deviations from CPP. By drawing the method profile of e.g., private methods, we identified their

unique CPP.

Outline Chapter 2 describes the settings of the experiment, including input data, the ten numerical

metrics, and the five categorical metrics. Chapter 3 uses cross-tabulation analysis to discover some

important characteristics of Java CPP. The distribution law of the numerical metrics is discovered

using a linear regression model in the log-log scale in Chapter 4. Chapter 5 discusses interesting

findings in a table of correlation coefficients for all numerical metrics. Method profiles are described

and used in Chapter 6. Finally, Chapter 7 concludes this work and outlines directions for future

research.
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Chapter 2

Experimental Setting

Our input database consisted of nine software collections, spanning a total of over 66,000 methods

in 8,500 classes. While we do not have the source files for all of these classes, estimates based on

the sources that are publicly available indicate that this colossal collection of software comprises well

over 2.5 million lines of Java source code. A total of over 40 different metrics, or observations, were

computed for each of the input methods. Of these, the 15 most important and indicative metrics were

chosen for detailed analysis, based on previous research in the field (e.g., [5], [13], [14], [16], [20],

[21], and [24]). These indicators were of two kinds: numerical metrics, and categorical metrics,

whose values cannot be expressed as numbers but rather as enumerated types [19]. The two kinds are

sometimes called raw metrics and selection criteria, respectively (see [34]). In our case, the values of

all numerical metrics were natural numbers. However, in general, certain numerical metrics could be

allowed negative as well as non-integral values.

The data was gathered by independently analyzing each class file, using two mechanisms:

1. The class file was loaded into the JVM (Java Virtual Machine) using

Class.forName(class name).

The Java reflection library java.lang.reflect was then used to obtain the signature in-

formation for each method defined in the class.

2. A class file parser was invoked to obtain further information on each method. This parser was

implemented specifically for this research project, and is capable of producing many more code

indicators than those investigated here. In particular, the parser includes an extensible data flow

analyzer, which produces sophisticated metrics such as method and class chameleonicity [10],

a measure of the code’s reliance on polymorphic method execution.
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Note that the values of metrics computed in this fashion may depend on the specific Java compiler

and not only on the source of the program. Our measurements are therefore carried out with the

proviso that all the class files were generated by the same compiler. Nevertheless, we do not expect

to see much differences between compilers here, since the bulk of the optimization efforts currently

revolves around the virtual machine, using techniques such as just-in-time compilation [1].

We now turn to a more detailed description of the input, the categorical metrics, and the numerical

metrics which are the subject of this research.

2.1 The Input Sets

The input sets comprised four software libraries or frameworks, two CORBA Object Request Broker

(ORB) implementations, and three large applications or sample programs.

JDK Runtime Library of Sun Java Development Kit version 1.2

This library (java.* packages) comprises the basic runtime services of Java programs, in-

cluding I/O, Java beans, applets, security, utility classes etc.

Swing Java Foundation Classes (sometimes called JFC or “Swing”) version 1.1

This framework, which ships with JDK 1.2, comprises all javax.swing.* packages and

provides high level GUI construction functionality.

HotJava Sun HotJava web browser version 2.0

This fairly large application demonstrates the use of ‘pure-Java’ technology in the implementa-

tion of a full-fledged web browser.

IBM-XML IBM XML for Java 1.0

This is a collection of service classes for parsing and creating XML documents in Java.

CORBA OMG basic CORBA classes for Java

A group-effort implementation of the Object Management Group’s classes to map the CORBA

API to Java.

Orbacus ORBacus version 4.0.1 for Java

This is an implementation of a CORBA 2.3 ORB for Java by Object Oriented Concepts, Inc.

(OOC) [28]. Included are only the classes comprising the ORB itself.
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Orbacus-Test Test and Demo classes from ORBacus version 4.0.1 for Java

These are the demonstration and test programs shipping with OOC’s ORBacus version 4.0.1

for Java.

Orbix Orbix 2000 for Java

A different implementation of a CORBA 2.3 ORB, this one by IONA Technologies [29].

SF-samples Sample Programs from the IBM San Francisco Framework Release 1.3.1

The complete suite of demonstration and sample programs shipping with IBM’s San Fran-

cisco Project ([38], [39]), release 1.3.3. The San Francisco Project itself includes thousands

of classes, providing a wide framework for business applications. These methods were not

included in this study for reasons explained below.

The class files in each of these nine collections were analyzed as described above. Inner classes

were included in our analysis, since, with the exception of the pointer to the containing object, they

behave and are used just like other classes. About 15% (1,310 classes) of the input classes were

inner classes. The number of methods defined in these classes was 6,465, which is about 9.7% of

all methods. In addition, the input included 320 anonymous classes (3.8% of all classes) with a total

of 1,280 methods, which are less than 2% of all methods. Since our primary concern here is methods

and not classes, methods from anonymous classes were included in the analysis as well, even though

the usage of these classes is, by definition, ad-hoc.

Even though Java interfaces are not compiled to executable code, they are an important component

of the Java CPP. In our experiments, we used the fact that interfaces receive a .class file represen-

tation to study these as well. The basic assumption is that methods whose signature is defined in an

interface are abstract. Although abstract methods have no body, there are several meaningful metrics

which apply to these, including access level and signature.

On the other hand, we have excluded from this study machine-generated classes, such as the

classes created for Remote Method Invocation (RMI) support (Stub and Skel classes), and the

methods found in them.

Table 2.1 summarizes the absolute number of packages, classes, and methods in each of these

software collections, as well as their relative weight in the sample.

The total number of methods used was 66,391. Note that if a method is overridden in a subclass,

both the original and the overriding implementations were analyzed. To the best of our knowledge,

this is one of the largest software ensembles to be studied in the literature, if not the largest (as
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Project # Packages # Classes # Methods

JDK 38 (12%) 1,081 (13%) 11,388 (17%)

Swing 17 (5%) 1,231 (14%) 11,830 (17%)

HotJava 25 (8%) 609 (7%) 5,705 (8%)

IBM-XML 6 (2%) 111 (1%) 1,291 (2%)

CORBA 50 (15%) 1,459 (17%) 9,253 (14%)

Orbacus 49 (15%) 1,046 (12%) 7,486 (11%)

Orbacus-Test 16 (5%) 584 (7%) 4,473 (7%)

Orbix 107 (33%) 1,329 (16%) 8,622 (13%)

SF samples 15 (5%) 1,050 (13%) 6,343 (12%)

Total 323 8,500 66,391

Table 2.1: Software packages used in the experiments.

suggested by [7]). Of these, a total of 777 methods, or fewer than 1.2%, were found to be native, and

hence excluded from our study. (Native methods are methods implemented using machine-specific

instructions, which are not compiled into the JVM’s bytecode format.)

Note that the relative weights of the packages in the input set are not equal. JDK, Swing and Orbix

together comprise nearly half the input data, measured either by the number of classes or the number

of methods.

In general, selecting good inputs for a common practice study is not easy. For example, in our

sampling of Java code, we refrained from using a huge collection of some 5,000 applet classes, which

were located by a web spider. These applets appeared to be quite ad hoc, and not reflective of an

orderly Java software development process. Likewise, data on over 87,000 Java methods from the

IBM San Francisco project was not used. An initial analysis indicated that this data exhibits similar

characteristics to those of the other, more easily available data. However, considering the huge amount

of classes in San Francisco (more than the number of classes in all other projects combined), any

special attribute or unique statistical behavior found there would have created an extremely strong

bias. We did, however, include the classes from San Francisco’s sample programs.

Input selection is a difficult process, which requires balancing factors such as code availability,

personal evaluation of quality, etc. We believe that the nine projects included in this study represent a

reflective sample of the common Java programming practice.

This CPP reflects generic programming in Java. We believe that programs created in some special

domains (e.g., applets in Java, or real-time programs with respect to C programming) would exhibit a
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different common programming practice than the generic CPP of their respective languages.

2.2 The Categorical Metrics

The five categorical metrics included in this study were:

1. Method Sort (SORT) Java distinguishes a special kind of methods, called constructors, which

are only called when an object is constructed. In contrast, finalizers are somewhat similar to

C++ destructors, but are far less common. Finalizers are invoked just prior to an object being

disposed by the garbage collector. All remaining methods are considered plain.

2. Access Level (ACL) An orthogonal classification of methods is by their visibility or access

level. The access level of a method is either public, private, protected, or package, the latter

being the default access level of methods in Java.

3. Abstraction Level (ABS) Methods were also classified by their abstraction level. Methods des-

ignated as abstract cannot have body, and must be overridden in descendant classes. In contrast,

final methods must have body and cannot be overridden in descendant classes. All other meth-

ods are concrete. We do not consider methods in a class denoted final as being final methods,

even though such methods cannot be overridden. Note that the ABS metric is not entirely

orthogonal to SORT, since constructors cannot be abstract or final.

4. Static/Virtual (STAT) A basic division of methods into two groups distinguishes static methods

from those that are non-static (“virtual” methods in C++ terminology).

5. Refinement (REF) Yet another binary division is whether a method is a refinement of a directly

or indirectly inherited and overridden method.

There are several other categorical metrics which we have collected, but have not included in this

analysis. One of these metrics is the method’s return type (void, a primitive type, or an object type).

Another possible categorical metric uses information gathered by data flow analysis to further classify

plain methods as inspectors (also known as selectors), mutators (also known as modifiers), and even

revealers (which are methods that allow direct modification of state from outside).

2.3 The Numerical Metrics

Ten numerical metrics, in three major groups were studied in this research.
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Intrinsic Complexity (IC) These are metrics which pertain to the complexity of the computation

carried out in the method itself and the difficulty in understanding the message source.

1. McCabe [20] Cyclomatic Complexity (MCC) A value of 1 indicates the method has no branches;

it is executed in a “fall-through” linear manner. Higher values indicate a higher number of

branches.

2. Size in bytecodes (BC) Note that in the absence of source code, this is the closest approximation

we have to the widely accepted LOC (Lines Of Code) metric. In fact, we argue that BC is in

many ways preferable to LOC, since the measure it gives of program size is independent of

indentation, comments, and other personal preferences and text-formatting issues.

3. Mathematical Opcodes (MathOp) The number of mathematical opcodes (including integer and

float arithmetic) appearing in the compiled method.

4. Instantiation Opcodes (NewOp) The number of instantiation sites in the compiled code, i.e.,

the number of times new and similar opcodes are found.

5. Local Variables Access (LV) The number of sites in the code that access local variables. This

includes sites that access the method parameters, including the implicit this parameter in

non-static methods.

Note that any measure of sites in the code (here and in other metrics) is hardly an indicator of

the actual number of times the operation (such as accessing local variables, in this case) takes

place during the method’s execution: a single site can be visited numerous times (e.g., inside a

for loop), or not at all.

Self Interaction (SI). This is the group of metrics concerned with the interoperability of the method

with other members, such as methods, static methods and fields, of the class it is defined in.

6. Internal Messages (InM) The number of call sites in the code that send messages to this, or

static messages to the class in which the method itself is defined.

7. Parameters (PARAM) The number of parameters the function accepts, excluding the invisible

parameter this for non-static methods.

8. Self-Fields Access (SFA) The number of sites in the method’s code that access fields in this

(for reading or writing purposes). For static methods, this value refers only to the number of

sites that access static fields defined in the same class.
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Interaction with Others (IO). This group of metrics deal with the complexity of dependence of a

method in other classes to perform its duties.

9. External Messages (ExM) The number of call sites in the code used for sending messages to

objects other than this, or static messages to other classes.

Naturally, in some runs the resulting message can be a message to this, depending on the call

target’s nature (e.g., a local variable that can be assigned this).

10. Fields Access (FA) The number of sites in the code that access fields in objects other than this

(for reading or writing purposes).

There is a large number of additional metrics that were collected, but are not analyzed in this

work. In particular, we can distinguish, for some of the metrics, between the vocabulary, which is

the number of unique instances used, and the text, which is the total number of instances appearing

(i.e., including repeated appearances). For example, the vocabulary of the local variables access (LVA)

metric is the number of unique local variables that are potentially accessed by the code. The text of the

LVA metric is the number of sites in the code that access a local variable. In the latter measurement,

two different sites that access the same variable are both counted. As another example, consider the

internal messages (InM) metric. The vocabulary of InM is the number of different, unique messages

that the method can potentially send (depending on its flow of execution) to its own object (this).

The text of the InM metric is the number of sites in the code that send a message to this. If the same

message is sent in two different places, it is counted twice in this case.

Of the ten metrics listed above, this dichotomy applies to seven: MathOp, NewOp, LVA, InM,

SFA, ExM and FA. In all cases, both variants exhibited a very similar behavior, though naturally, the

text metric is always equal to or larger than its respective vocabulary metric. Here we have used the

text variant of each metric. The exact relationship between the two is a subject for further research.

Additional metrics that were measured but are not used in this work include the number of ex-

ception handlers in the method, the number of static messages sent by a method, the number of local

variables accessed only for reading, the number of local variables that are both read and written, etc.

Some of these metrics are components of metrics we did use. Others were tested and we believe them

to be non-monotonic. Finally, several metrics were not used simply because we consider them to be

of little or no interest.
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Chapter 3

Analysis of Categorical Metrics

In this chapter we study the distribution of the categorical metrics in our sample. Table 3.1 is a cross

table of the abstraction level (ABS) metric by the access level metric (ACL). Here and in the following

chapters, the most important findings are summarized under appropriate headlines.

Private Protected Package Public

Final 13.0% 6.9% 11.4% 68.7%

Concrete 6.7% 5.4% 6.6% 81.3%

Abstract 0.0% 1.7% 1.5% 96.9%

Total 6.1% 5.0% 6.2% 82.7%

Table 3.1: Cross table of ABS (abstraction level) by ACL (access level).

CPP Finding 1: Dominance of public access.

From the last row of the table we see that the vast majority, almost 83%, of the methods are

public. All other methods are distributed roughly equally between the three remaining categories:

private, protected, and package. This phenomenon cannot be explained solely by the large weight

of library code in our input, since in restricting the measurements to an application program (e.g.,

HotJava) we find that 69% of all methods are public. Thus, it appears that the abundance of public

access level is a typical characteristic of Java programming.

The finding that only about 6% of all methods have package access level is rather surprising in

its indication of low encapsulation at the package abstraction level. A related phenomena is that less

than 4% of abstract methods are not public. (Note that Java does not allow private methods to be

abstract.)
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The largest fraction of non-public access level occurs at final methods. This can be explained by

final methods tending to be of low implementation level and hence requiring stronger encapsulation.

Further insight into the usage of access level can be gained from Table 3.2, which cross tabulates

method sort (SORT) against ACL. We see that a rather large fraction (over 17%) of constructors

have non-public access level. In other words, many classes can only be instantiated from within the

package. Combining this bit of information with the fact that most methods are public we may find

here an indication of usage of the ABSTRACT FACTORY and FACTORY METHOD design patterns [9].

Further testing shows that over 6% of the concrete, public classes have no public constructors, a

finding that strongly reinforces this speculation.

Private Protected Package Public

Finalizer 0.0% 84.2% 0.0% 15.8%

Plain 6.8% 5.3% 5.0% 82.9%

Constructor 2.4% 3.2% 11.9% 82.5%

Total 6.1% 5.0% 6.2% 82.7%

Table 3.2: Cross table of SORT (method sort) by ACL (access level).

The dual of Table 3.1 is given in Table 3.3 which cross tabulates ACL by ABS.

Final Concrete Abstract

Private 4.1% 95.9% 0.0%

Protected 2.6% 93.8% 3.6%

Package 3.5% 93.9% 2.5%

Public 1.6% 85.9% 12.5%

Total 1.9% 87.4% 10.7%

Table 3.3: Cross table of ACL (access level) by ABS (abstraction level).

Examining the last column in this table we see that an overwhelming majority (over 87%) of

all methods are “concrete”, and that Java programs make minimal use (less than 2%) of method

finalization. Even in JDK, which must finalize many methods for security reasons, the fraction of

final methods is small (4.8%). In contrast, in HotJava finalized methods are much less frequent

(0.7%).

CPP Finding 2: Finalizers are rarely used.
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Table 3.4 is the dual of Table 3.2, being a cross table of ACL by SORT. Here we can see that the

use of finalizers is rare. In fact, only about one in a thousand classes includes a finalizer. Curiously,

finalizers tend to be protected, but due to the small number of finalizers, the statistical relevance of

this feature is debatable.

Finalizer Plain Constructor

Private 0.0% 93.4% 6.6%

Protected 2.0% 87.7% 10.3%

Package 0.0% 68.2% 31.8%

Public 0.0% 83.6% 16.4%

Total 0.1% 83.4% 16.4%

Table 3.4: Cross table of ACL (access level) by SORT (method sort).

More interesting information about the different access levels can be found in Table 3.5, cross

tabulating ACL by STAT.

Non-static Static

Private 89.8% 10.2%

Protected 98.1% 1.9%

Package 75.9% 24.1%

Public 81.5% 18.5%

Total 82.5% 17.5%

Table 3.5: Cross table of ACL (access level) by STAT (static indicator).

CPP Finding 3: Common use of package-wide global elements.

Table 3.5 shows us that approximately a quarter (24.1%) of all package-level methods are static.

This high figure indicates that many packages define “global” elements (within the package scope),

shared by several (or all) classes in the package. This can be viewed as further evidence for the need,

in Java, for a stronger linguistic unit than the package (see [3]).

Static methods are much less common in other access levels. They are least common among

protected methods (less than 2%), and somewhat more common among private methods (about one

in ten). About 17.5% of all methods are static.
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Table 3.6 cross tabulates SORT by ABS.

Final Concrete Abstract

Finalizer 0.0% 100.0% 0.0%

Plain 2.3% 84.9% 12.8%

Constructor 0.0% 100.0% 0.0%

Total 1.9% 87.4% 10.7%

Table 3.6: Cross table of SORT (method sort) by ABS (abstraction level).

There is not much surprising information in this table. Note that in Java, all constructors must

be concrete. The small number of finalizers in our sample are all concrete, even though this is not

mandated by the language.

Let us now turn to the characteristics of refining methods. Table 3.7 cross tabulates REF by ABS.

Final Concrete Abstract

Non-refinement 2.3% 84.7% 13.0%

Refinement 0.1% 99.9% 0.0%

Total 1.9% 87.4% 10.7%

Table 3.7: Cross table of REF (refinement indicator) by ABS (abstraction level).

Naturally, no abstract method is a refiner. An abstract method can override an inherited one, but

not every overriding is a refinement. In particular, any overriding by an abstract method is not defined

as a refinement, since the new method does not invoke the overridden one.

The interesting finding in this table is the low portion of final refining methods. While final

methods comprise 1.9% of the whole input set, only 0.1% of the refining methods are final. Where

there is one refinement, there is probably room for additional future refinements, which could explain

this datum.

CPP Finding 4: Replacement is preferred over Refinement.

From Table 3.8, which cross tabulates SORT by REF, we find that refinement is not very common

among plain methods (only 2.3% of plain methods are refiners). This implies that the Java Common

Programming Practice prefers replacement (commonly called American semantics) over refinement

(Scandinavian semantics) [4, page 196].
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Non-refinement Refinement

Finalizer 76.3% 23.7%

Plain 97.7% 2.3%

Constructor 5.4% 94.6%

Total 82.5% 17.5%

Table 3.8: Cross table of SORT (method sort) by REF (refinement indicator).

Unsurprisingly, most constructors are refiners: they use super(...) (explicitly or implic-

itly) to invoke the inherited constructor. Yet about one in twenty constructors (5.4%) does not call

super(...). With the single exception of the constructor of java.lang.Object, which has

no inherited constructor to call, all other constructors which are not refiners simply call an overloaded

constructor from the same class, using this(...). In most cases, constructors callingthis(...)

are used for providing default parameters. This means that the lack of support for default parameter

values in Java causes an estimated increase of circa 5% in the number of constructors alone.

CPP Finding 5: Finalizers fail to use refinement.

From Table 3.8 we find that about one in four finalizers is a refiner, i.e., relies on an inherited

finalizer to do some of the cleanup job. This value is surprisingly low. We have expected all finalizers

to call the finalizer they override (all finalizers override an inherited finalizer, directly or indirectly,

since the method finalize() is defined in java.lang.Object). In C++, for example, the

destructors for base objects are automatically invoked when the derived class’s destructor is used. This

is done in order to ensure, among other things, proper cleanup for private members in base classes,

etc. To reach the same result in Java, finalizers must explicitly call the inherited finalize(),

yet we see that most finalizers do not bother to do so. Apparently, many programmers believe that

since java.lang.Object’s finalize() method does nothing, there is no point in calling the

inherited finalizer in most cases. However, this behavior of the default finalizer could theoretically

change in future versions of the Java platform, in which case most finalizers would become broken

code.

We believe that the proper solution is for the Java language definition to include an implicit call

to the inherited finalize() in any finalizer that does not make such a call explicitly. This would

be similar to the implicit call to super() in constructors.
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Chapter 4

Distribution of Numerical Metrics

In this chapter we study the distribution of our 10 numerical metrics. Table 4.1 gives some of the

essential statistics of each of these metrics. These statistics were computed only for the 57,286 non-

abstract, non-native methods.

Metric Min Max # values Mean Median Common SD SD/Mean

1. McCabe (MCC) 1 198 85 2.09 1 1 3.70 177%

2. Bytecodes (BC) 1 13911 889 48.86 15 5 149.27 306%

3. Math copcodes (MathOp) 0 204 69 0.46 0 0 2.87 621%

4. New opcodes (NewOp) 0 378 92 0.65 0 0 4.00 620%

5. Local variables access (LVA) 0 2707 270 8.58 3 1 23.48 274%

6. Internal Messages (InM) 0 160 63 1.03 1 0 2.54 248%

7. Parameters (PARAM) 0 24 24 0.98 1 0 1.29 132%

8. Self fields access (SFA) 0 520 96 1.52 0 0 4.92 324%

9. External Messages (ExM) 0 1606 168 2.91 1 0 11.92 410%

10. Fields access (FA) 0 361 87 0.87 0 0 4.14 475%

Table 4.1: Essential statistics of numerical metrics.

4.1 The Essential Statistics of Numerical Metrics

A metric which was widely studied in the literature is the number of parameters to methods. Meyer [22]

argues that in a good object oriented design, the average value of this metric tends to be small.
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CPP Finding 6: Java methods accept a relatively large number of parameters.

In the Eiffel Base library [21], the average number of arguments is 0.4, while in Eiffel Vision

(which can be thought of as the Eiffel equivalent of Swing), this number is 0.7. Lorenz and Kidd [16]

report on only slightly higher numbers, ranging between 0.3 and 0.9, in a variety of Smalltalk projects.

Table 4.1 shows that in Java this number is even higher.

The maximal number of arguments to methods is 3 in Eiffel Base, and 7 in Eiffel Vision. In con-

trast, in our study of Java, we find that there is at least one method with as many as 24 (!) arguments.

One can also surmise from the “# values” column that this is not a singular phenomena. It should be

noted that all eight methods with 20 or more parameters are from the San Francisco Project’s sam-

ple programs. There are 11 such methods, all of which are used for initialization. For example, the

method com.ibm.sf.samples.TaskFactory.createTask has two variants, one of which

accepts 24 parameters, the other “only” 23. Outside of San Francisco’s samples, only one method

accepts as may as 19 parameters (layoutMenuItem in Sun’s Swing class BasicMenuItemUI).

A total of 197 methods in our sample (0.34%) had 8 or more arguments (compared to the maxi-

mum of 7 parameters in the Eiffel library methods). A possible explanation is that our sample size of

circa seventy thousand methods was larger by an order of magnitude than the 5,489 methods found

in both the Eiffel Base and Vision libraries combined. We will revisit this point below after deriving

a formula approximating the distribution of metric values.

CPP Finding 7: Java methods send few messages.

Lorenz and Kidd also report that the average number of message sends in a method ranges between

5 and 20 in the various Smalltalk projects they studied. In our suite the number of message sends is

the sum of the InM and ExM metrics (internal and external messages, respectively). In total, we have

that non-abstract Java methods make an average of 3.94 method calls, which is much less than the

corresponding Smalltalk values. However, one must keep in mind that in Smalltalk (in contrast to

Java), every comparison, assignment, and mathematical operation involves message sending.

CPP Finding 8: Metric distribution is skewed.

Table 4.1 also reveals a huge standard deviation as a phenomenon which sweeps all metrics. In

fact, the standard deviation is typically several times larger than the mean value. Another indication

of skewness in metrics distribution is that the minimum value is equal to the median value in half of

the 10 distributions, and equal to the common value in 8 of them. Even in the remaining distributions,
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the median and the common are much closer to the minimum than to the maximum of the range.

Similar behavior is exhibited by the mean statistics, which also tends to be very close to the minimal

value.

4.2 The Zipf-Like Distribution of Metrics

These findings lead us to the non-surprising belief that methods obey a Zipf-like distribution [37],

i.e., that there is a rather large number of “small” methods, and that the number of “big” methods

decreases along a hyperbolic curve. This belief is also strengthened by examining the BC met-

rics in which we see that the average number of byte codes is around 50, where the median is 15,

which roughly correspond to two or three source code lines. (It is also interesting to note that the

most common bytecode value is 5, which is exactly the size of a standard “get” method such as

java.awt.Component.getName, etc.)

In order to verify this, we examined more closely the distribution of methods’ cyclomatic com-

plexity (MCC), and the number of bytecodes. The results are as depicted in Figures 4.1 and 4.2. Both

charts in the figure are drawn in a log-log scale. By doing so, we are able to simultaneously test all

steps in the Tukey ladder [35], [27] for analysis of distribution (with the exception of the exponential

decay hypothesis, y � K��kx, fifth on the ladder).

The fact that most points at the lower right corner in the chart appear to fall on a horizontal line is

no coincidence. These points correspond to those values of the metric that show only a small number

of times in our inputs. The points on the lowermost horizontal line correspond to those metric values

which show up exactly once, i.e., with frequency �������. The next such line corresponds to a

frequency of �������, etc.

CPP Finding 9: Metric distributions have a linear regression model.

In the log-log coordinate system, both distributions can be approximated fairly accurately by a

straight line. The coefficients of these two lines are given in the respective charts. Thus, if f	x


denotes the frequency in which a numerical metric shows the value x, we have that

log f	x
 � C �K log	x
� (4.1)

where C and K are some constants, or alternatively

f	x
 � cx�K� (4.2)
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Figure 4.1: Distribution of the MCC (McCabe Cyclomatic Complexity) metric.

where c is some other constant (c � ��C ). Equation (4.2) is reminiscent of Mandelbrot law [17] for

distribution of words in natural language text.

We call K the metric frequency coefficient.

We applied similar analysis to all other metrics. Since the minimal value of these metrics is zero

it was necessary to shift their values up by 1. For example, Figures 4.3 and 4.4 give the distribution

in the number of parameters and the number of fields access operations, respectively.

In the figure we see again that the distribution follows a straight line in the log-log scale. In fact,

a similar distribution pattern shows up in all 10 numerical metrics. This pattern also appears in the

vocabulary variance of the methods selected, and in many other metrics not included here. Table 4.2

summarizes the results of linear regression analysis in the log-log space of all numerical metrics.

We see that the frequency coefficients are usually in the range of approximately 1.9 to 3.0. The

two exceptions are the BC metric, for which K � ����, and the number of parameters, for which

K � ����.

CPP Finding 10: The regression coefficient can be used for constructing composite metrics.

The value of K can be used as a weighting factor in combining several metrics into a single
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Figure 4.2: Distribution of the BC (size in bytecodes) metric.

Metric K C R� p

1. McCabe (MCC ) 2.54 0.03 0.98 0

2. Bytecodes (BC ) 1.43 -0.16 0.88 0

3. Math copcodes (MathOp) 2.39 -0.41 0.97 0

4. New opcodes (NewOp ) 2.55 -0.28 0.96 0

5. Local variables access (LVA ) 1.92 0.17 0.95 0

6. Internal Messages (InM ) 2.93 0.14 0.96 0

7. Parameters (PARAM ) 3.42 0.39 0.93 6.9e-09

8. Self fields access (SFA ) 2.39 0.04 0.99 0

9. External Messages (ExM ) 2.14 -0.00 0.98 0

10. Fields access (FA ) 2.34 -0.22 0.98 0

Table 4.2: Linear regression coefficients and statistics of numerical metrics.

composite metric [14, Chap 5.4]. Statistically, the frequency coefficient is crucial in computing the

essential statistics of a distribution of the sort of (4.2). It is not difficult to see that if the distribution

of x obeys (4.2), then the expected value of x depends only on the frequency coefficient (and not on
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Figure 4.3: Distribution of the PARAM (number of parameters) metric.

the size of the sample),

E	x
 �
�	K � �


�	K

� � (4.3)

for all K � �, where

�	K
 �
�X
x��

x�K� (4.4)

(The function �	�
 is nothing other than Riemann’s Zeta function, but this is inessential to the deriva-

tion leading to (4.3).) When K � �, E	x
 is unbounded, i.e., it increases with the size of the data.

In our case, this phenomena is to be expected in the BC metric, and (to a lesser extend, since this a

border case and the value might change with a different input set) in the LVA metric.

Moreover, if K � �, we can write the standard deviation �	x
 of the random variable x as a

function of the frequency coefficient,

�	x
 �

s
�	K � �


�	K

�

�
�	K � �


�	K


�
�

� (4.5)

If K � �, then the standard deviation is not bounded and will depend on the sample size.
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Figure 4.4: Distribution of the FA (fields access) metric.

Unfortunately, (4.3) and (4.5) are not good predictors of the respective values of a distribution

approximated by (4.2), and hence they are of mere theoretical interest. We learn however from (4.3)

and (4.5) that the value of the interceptC is less interesting since it does not take part in the important

statistics of the distribution.

Table 4.2 also gives the values of R� and p regression statistics. The R� statistic is a measure

of the extent at which the variability of the dependent variable (the frequency of occurrence of a

certain metric value) can be accounted for by the linear regression model. We see that over 85% of

this variability can be explained by the regression model. Typically, R� is at the level of 95% and

sometimes even as high as 99%. Such values are extremely high for phenomena which cannot be

attributed to some underlying physical law.

The p statistic is the probability of accepting the null hypothesis, namely that the variability in the

dependent variable is not a result of the linear regression value. The values of p are extremely small,

and in all cases but one they were underflowed to zero by the underlying mathematical software [18] .

These values look even smaller when compared to the �
 and �
 confidence levels commonly used

in tests of this sort. With high confidence we conclude then that the distribution of metric values can

be explained by a linear regression model.
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In finding the regression constants, we did not try to ensure that

�X
m��

f	m
 � � (4.6)

where f	m
 denotes the predicted frequency of a metric assuming a value m. Another complicating

matter is the skewing of the regression line caused by metrics values which occur a very small number

of times, as apparent by the horizontal lines at the bottom of Figures 4.1, 4.2, 4.3, and 4.4. To prevent

this skewing, we have ignored the five least-common values of each metric when calculating the

regression constants. In our experiments, this choice had led to the best-fitting regression lines, as

measured by the R� and p values, and this was further confirmed by simple visual comparisons. A

possibly better solution, left for future research, is to group the metric values in intervals, especially

for metric values which occur a very small number of times. Such a procedure is likely to improve

the regression fitting by eliminating the clustering along the horizontal lines at the bottom of the

distribution diagrams.

Let us now apply this linear regression model to find the frequency of methods with eight or more

parameters. By using the appropriate constants from Table 4.2 into (4.2) we find that this frequency

is ����
 (to reach this value, one has to repeatedly apply (4.2) to all integer values of x greater than

8. The sum converges to ����
). In other words, in the abovementioned collection of Eiffel methods

we would then expect over 30 such methods (a Poisson distribution model can be easily applied here,

where n is the number of methods and p is the probability of a method having 8 or more parameters)

The fact that there are none is significant, and indicates a meaningful difference in style and in the

Common Programming Practice between the two languages.

4.3 The Transformed Metric

CPP Finding 11: Metric logarithm values are more meaningful than the original values.

The high values of R� and the small values of p do not only reassure us in the linear regression

model. We argue that the logarithm of a metric, or more precisely,

m� �

��
� log	m
 ifmin	m
 � �

log	m� �
 ifmin	m
 � �
� (4.7)

wherem is the original metric value, is more meaningful then the non-transformed value. Consider for

example the method size in bytecodes. It is not so important to know that the number of bytecodes is
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exactly 1,973. More important is the order of magnitude, which is reflected by the transformed value.

This also holds with metrics with a smaller range of variability such as the number of parameters.

In checking Table 4.3, we see that an increase of 1 in the value of the metric from 2 to 3 reduces

the predicted frequency by a factor of four. On the other hand, an increase from 9 to 10 reduces

the predicted frequency only by a third, and is therefore much less significant. These aberrations are

eliminated by using the transformed (logarithmic) metric value.

Metric Value Predicted Frequency

2 22.89%

3 5.72%

4 2.13%

5 1.00%

6 0.53%

7 0.32%

8 0.20%

9 0.13%

10 0.09%

Table 4.3: Predicted frequency of methods by the number of parameters.

Table 4.4 is a revision of Table 4.1 where the statistics were computed using the transformed

metrics values. The values presented in the table are after applying the transformation inverse. Doing

so is tantamount (almost) to computing the geometrical instead of the arithmetical mean. The inverse

of the standard deviation was defined as half the difference between of inverse transforms of the mean

plus and minus the standard deviation.

Comparing Table 4.1 and Table 4.4 we see similar phenomena for all metrics: as expected, the

mean value decreases by using the logarithmic transformation. Also, although the standard deviation

remains large, we see that it decreases not only in absolute terms, but also in relation to the new values

of the mean.
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Metric Mean SD SD/Mean

1. McCabe (MCC) 1.49 1.05 70%

2. Bytecodes (BC) 17.90 30.69 171%

3. Math copcodes (MathOp) 0.16 0.56 354%

4. New opcodes (NewOp) 0.29 0.67 237%

5. Local variables access (LVA) 3.51 6.05 172%

6. Internal Messages (InM) 0.62 0.98 157%

7. Parameters (PARAM) 0.70 0.93 132%

8. Self fields access (SFA) 0.69 1.34 194%

9. External Messages (ExM) 1.21 2.14 176%

10. Fields access (FA) 0.32 0.87 275%

Table 4.4: Essential statistics of the transformed metrics.
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Chapter 5

Correlating Numerical Metrics

Applying the logarithmic transformation is especially important in models which assume linearity of

numerical metrics. An important case in point is co-variance and correlation coefficients. Table 5.1

presents the coefficient of correlation between each of the pairs of numerical metrics. In each ta-

ble cell, the top value shows the pairwise coefficient of correlation between the original respective

metrics, while the bottom value shows this coefficient after applying the logarithmic transformation.

If the difference between these two values is greater than 0.04, then the larger value is printed in

boldface.

There are several things to notice in the table. First, all values are positive (though a few values are

too close to zero to be of any significance). This observation strengthens our belief that all numerical

metrics reflect different perspectives of method complexity.

We witness strong positive correlation (0.67) between BC and MCC, which grows to a more

significant value of 0.75 for the transformed metrics. Longer methods tend to have more branches

and in general, follow a more complicated flow of control.

CPP Finding 12: Large methods tend to operate on other objects.

There are significant correlations between the number of messages sent to other objects and the

size in bytecodes (0.85 or 0.80). This indicates that larger methods tend to use methods from other

classes. On the other hand, the correlations between the size and the number of internal messages

(InM) is not as strong (0.53 or 0.49). Thus we can conclude that more than large methods tend

to manipulate the object on which they were invoked, they manipulate other objects. These “other

objects” can include objects passed as parameters, or objects that are referenced by the current object’s
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Metric 2 3 4 5 6 7 8 9 10

1. McCabe 0.67 0.49 0.17 0.74 0.42 0.12 0.51 0.48 0.51

0.75 0.56 0.34 0.71 0.31 0.19 0.41 0.59 0.47

2. Bytecodes 0.36 0.69 0.90 0.53 0.11 0.61 0.85 0.55

0.47 0.53 0.92 0.49 0.32 0.49 0.80 0.55

3. Math copcodes 0.06 0.48 0.19 0.16 0.29 0.15 0.42

0.19 0.52 0.12 0.21 0.33 0.31 0.35

4. New opcodes 0.52 0.42 0.00 0.34 0.63 0.26

0.41 0.22 0.08 0.26 0.65 0.32

5. Local variables access 0.52 0.19 0.66 0.82 0.56

0.50 0.41 0.52 0.69 0.47

6. Internal Messages 0.06 0.28 0.34 0.24

0.09 0.09 0.27 0.26

7. Parameters 0.06 0.06 0.06

0.08 0.23 0.06

8. Self fields access 0.55 0.40

0.35 0.22

9. External Messages 0.41

0.44

10. Fields access

Table 5.1: Correlations between metrics (top) and between transformed metrics (bottom).

fields, as well as objects created by the method itself during its execution.

CPP Finding 13: Local variables (and parameters) are used when accessing other objects.

Another high correlation (0.82 or 0.69) is found between the number of external messages (ExM),

and the number of local variable access operations (LVA). This could indicate that local variables are

often used as parameters to methods when sending external messages. The relatively low correlation

between LVA and InM (0.52 or 0.50) might indicate that local variables (which naturally include the

calling method’s own parameters) are less often used as parameters to internal messages.

The LVA metric is also strongly correlated to the BC and MCC metrics (0.90 and 0.74, respectively

for the original metrics, and 0.92 and 0.71 for the transformed metrics).

Other than those mentioned above there are no significant high correlation coefficients in Ta-

ble 5.1.
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Chapter 6

Categorical Metrics vs. Numerical Metrics

We now turn to the study of the values of the numerical metrics in the different categories as defined

by the categorical metrics. To this end, “profile diagrams” are introduced here as an economical and

effective means for visualizing and understanding the numerical metric characteristics of a single

method or a group of methods.

6.1 On Reading Method Profile Graphs

Figures 6.1, 6.2 and 6.3 give three different profiles of method groups. The ticks on the X-axis

correspond to the metrics, with the standard numbering as used above (see e.g., Table 4.1). Recall

that metrics 1–5 belong in the intrinsic-complexity group, metrics 6–8 form the self-interaction group,

while the interaction-with-others group includes metrics 9 and 10.

The Y -axis uses the transformed logarithmic metrics value. In order to be able to describe multiple

metrics using the same scale, we applied the standard linear scaling and shifting which brings the

distribution to a mean 0 and a standard deviation 1. A profile of a group of methods (or a single method

for that matter) is drawn in the diagram by marking the values of all metrics and then connecting

the points in each group of methods. Since the various metrics are presented in an arbitrary order

within each group, the line used for connecting the points is primarily a visual aid, and no additional

significance should be attributed to it.

6.2 Profiling by Access Level

Figure 6.1 gives the profile of public, protected, private and package level access methods.
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Figure 6.1: Profiles of the different categories of ACL (Access Level).

CPP Finding 14: Complexity increases with decreased accessibility.

Concentrating first on the intrinsic complexity group of metrics, we see that private methods

achieve higher values, by 0.4 to 0.8 standard deviation units, compared to the entire collection of

methods. This is in agreement with our intuition, which is that private methods will tend to hide

the nitty-gritty of class implementation. A similar phenomenon, but to a lesser extent, is observed

with protected methods. The intrinsic complexity of these methods is higher than that of the average

by 0.15 to 0.4 standard deviation units. Protected methods are only slightly more complex than the

average. In contrast, public methods are marginally simpler than the average. The overall result is a

clearly visible hierarchy of intrinsic complexity. This exposes an order between access levels—from

the most complex private methods down to the least-complex public ones.

The order still exist, though in a less clear manner, in other metric groups. For example, moving on

to the self-interaction group of metrics, we see that the differences between the four ACL categories

here are generally smaller. Private methods still tend to have higher metric values in this group. One

can also notice that public methods again rank slightly below the average in this group. No such clear

statement can be made about protected and package level access methods. It is interesting to note that
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“package” methods have a small number of parameters, and at the same time, a high number of self

fields access sites. This could indicate that these methods are used for granting classes in the package

privileged access to internal fields (e.g., “get” methods).

In the third, interaction-with-others, group of metrics we again see that private methods give

higher metric values, and that protected methods rank second. Here, both “package” and public

methods rank somewhat below the average. This could indicate that these more-accessible methods

generally deal with the class itself, having a lower interaction with other objects.

Since the bulk of the methods are public, it is hardly surprising that in this group, just as in all

other groups, public methods scores are very close to the average.

6.3 Profiling by Method Sort
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Figure 6.2: Profiles of the different categories of SORT (method sort).

In Figure 6.2, which shows the profiles of the different categories of SORT, we see that finalizers tend

to be significantly simpler than other methods in all metric groups, with few exceptions. It is obvious

that finalizers score far below the average on the number of parameters metrics, since finalizers by

definition accept no parameters at all (other than the implied this). It is somewhat surprising that
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finalizers send more internal messages than plain methods. They also access self fields more than

either of plain methods and constructors do. This point requires further investigation. However, since

there is a relatively small number of finalizers, one should not ascribe too much meaning to these

findings.

CPP Finding 15: Constructors are relatively simple.

Constructors on the other hand tend to be simpler than plain methods, with few notable exceptions.

It is not surprising at all that constructors would tend to have very little interaction with other objects,

and access self fields. The fact that by language definition, constructors are obliged to call (using

super(...) or this(...)) an inherited constructor or an alternative constructor of the same

class, explains why constructors tend to have a larger than the average number of internal messages.

It is somewhat surprising that on average, constructors require less parameters than plain methods.

This could probably be explained by the fact that in Java, overloading is used to provide default

values to constructors. Thus, if for example a constructor with three parameters is defined, it is often

accompanied by variants with two, one, or even no parameters at all, which would tend to lower the

average. Another reason for this would be that the default constructor, generated by the Java compiler

for all classes with no constructor definition, takes no parameters.

Again, since the bulk of methods are plain, their behavior is close to the average.

6.4 Profiling by Abstraction Level

Figure 6.3 shows the profile of concrete vs. final methods (most numerical metrics are inapplicable to

abstract methods).

Not much can be observed in this figure. Since final methods are a small minority (less than two

per cent; recall Table 3.3), the average metric values for concrete methods are extremely close to the

overall average values.

It is apparent that final methods have more self interaction, and less interaction with others, than

concrete ones. More research is required to sort out this point.

6.5 Profiling by Refinement

Finally, Figure 6.4 shows the profile of refining vs. non-refining methods. Recall that refining methods

are those that invoke a version of the same method that they directly or indirectly override.
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Figure 6.3: Profiles of the different categories of ABS (abstraction level).
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Figure 6.4: Profiles of the different categories of REF (refinement indicator).
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CPP Finding 16: Using refinement decreases method complexity.

Refining methods are clearly less complex than non-refining ones. This is especially apparent in

the interaction-with-others group of metrics.

The two exceptions, both in the group of self-interaction metrics, show that refining methods send

far more internal messages than average (by almost 0.6 standard deviation units), and have slightly

more access sites for self fields. The larger number of internal messages can be explained by the fact

that by their nature, all refining methods send at least one such message, whereas such a lower bound

does not exist for other methods. The difference in the SFA metric is probably too small to be of any

significance.
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Chapter 7

Conclusion and Future Research

This first work on self-calibration only served to demonstrate the technique. We have applied self-

calibration to monotonic metrics of methods in the Java programming language, while finding what

we call the common programming practice of this language. Even this modest application of the

technique was sufficient for highlighting its benefits.

We have shown that each metric can be characterized by a single positive constant (K , the fre-

quency coefficient). The coefficient can be used for scaling when several metrics are to be combined

into one. This scaling is required before weights can be applied to the various metrics.

Based on the Mandelbrot-like distribution common to all metrics measured, we argue that for

many purposes the transformed metric (defined in Section 4.3) is more meaningful than the original

metric value.

We were further able to borrow a visualization and analysis technique from the discipline of

psychology. The borrowed technique, which we call method profiles, allows researchers to easily

identify unique aspects in the common programming practice of a given development environment.

7.1 Benefits

This work’s most important contribution is the introduction of the modified metric, and the scaling of

metrics using self-calibration. We believe that using the scaled, modified metrics to create composed

ones can lead to more meaningful software measurements. This, in turn, could perhaps solve software

metrics’ lack of acceptance in the software industry ([26], [31]).

Finally, we note that the huge database generated for this research project can probably be useful

for additional purposes, not necessarily related to the issue of software metrics.
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7.2 Future Research

Much more work must be done in order to apply both self-calibration and method profiles even in the

limited domain of Java methods. We see several directions in which this work could and should be

extended in the near future.

Metrics Suite Several well known metrics, such as LOC or Halstead Software Science metrics [12],

were not included here. It would also be interesting to include metrics generated by software-

quality analysis tools, such as lint [6] or Jtest [30].

Data Set As large as our input was, we believe that there is still need to expand it to include other

prominent examples of Java programming.

Analysis Techniques It is not entirely clear that metrics should be always shifted by the magic value

1, and further statistical investigation is required to sort this point out. Similarly, we need

mathematical techniques for constraining the linear regression to satisfy (4.6). Also, we believe

that the linear regression would be even better if intervals are used to classify some of the rarer

metric values.

Non-monotonic Metrics Self-calibration, as presented here, applies to monotonic metrics only. Ad-

ditional research is required for extending it to non-monotonic metrics, such as the code-to-

comment ratio, the number of exception handlers, etc.

Class Metrics We strongly believe that self-calibration is also applicable to class metrics in addition

to method metrics (and perhaps also to package- and project-wide metrics). Many key class

metrics are clearly non-monotonic (e.g., the number of fields defined in a class, the interface

size, etc.). Thus, this research direction depends on the extension of the technique to enable

calibrating non-monotonic metrics.

Specialized Domains and Other Programming Languages The Common Programming Practice,

as defined in this research, applies to generic Java programming. As noted in Section 2.1, some

domains (such as Applets in the case of Java programs) are likely to have their own typical CPP.

The CPP can also be applied to other programming languages, such as C++ and Eiffel. It would

be interesting to find and compare the CPP values for the same set of metrics across different

programming languages.
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In addition, we believe that applying data-mining techniques to the database mentioned in Sec-

tion 7.1 will yield many interesting results. Early research in this direction indicates the existence of

nano-patterns within methods, a discovery that could lead to a new way of classifying methods.
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