
JTL – the Java Tools Language

Tal Cohen Joseph (Yossi) Gil ∗ Itay Maman
Department of Computer Science

Technion—Israel Institute of Technology
Technion City, Haifa 32000, Israel

ctal, yogi, imaman @ cs.technion.ac.il

Abstract
We present an overview of JTL (the Java Tools Language, pro-
nounced “Gee-tel”), a novel language for querying JAVA [8] pro-
grams. JTL was designed to serve the development of source code
software tools for JAVA, and as a small language to aid program-
ming language extensions to JAVA. Applications include defini-
tion of pointcuts for aspect-oriented programming, fixing type con-
straints for generic programming, specification of encapsulation
policies, definition of micro-patterns, etc. We argue that the JTL
expression of each of these is systematic, concise, intuitive and gen-
eral.

JTL relies on a simply-typed relational database for program
representation, rather than an abstract syntax tree. The underlying
semantics of the language is restricted to queries formulated in First
Order Predicate Logic augmented with transitive closure (FOPL*).

Special effort was taken to ensure terse, yet readable expression
of logical conditions. The JTL pattern public abstract class,
for example, matches all abstract classes which are publicly acces-
sible, while class { public clone(); } matches all classes
in which method clone is public. To this end, JTL relies on a
DATALOG-like syntax and semantics, enriched with quantifiers and
pattern matching which all but entirely eliminate the need for re-
cursive calls.

JTL’s query analyzer gives special attention to the fragility of
the “closed world assumption” in examining JAVA software, and
determines whether a query relies on such an assumption.

The performance of the JTL interpreter is comparable to that of
JQuery after it generated its database cache, and at least an order of
magnitude faster when the cache has to be rebuilt.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General; D.2.3 [Software Engineering]: Coding Tools
and Techniques

General Terms Design, Languages

Keywords Declarative Programming, Reverse Engineering

∗ Research supported in part by the IBM faculty award

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-348-4/06/0010. . . $5.00.

1. Introduction
The designers of frontier programming paradigms and constructs
often choose, especially when static typing is an issue, to test-
bed, experiment, and even fully implement the new idea by an
extension to the JAVA programming language. Examples include
ASPECTJ [52], JAM [5], Chai [71], OpenJava [76], the host of type
systems supported by pluggable type systems [6], and many more.

A prime component in the interaction of such an extension with
the language core is the mechanism for selecting program elements
to which the extension applies: The pointcuts of ASPECTJ, for
example, select the point in the code on which an aspect is to be
applied. Also, a key issue of implementing the conclusions of a
genericity treatise [31,51] is checking whether a given set of classes
are legible as parameters for a given generic construct—what the
community calls a concept.

JTL (the Java Tools Language) is a declarative language, be-
longing in the logic-programming paradigm, designed for the task
of selecting JAVA program elements. Two primary applications
were in mind at the time when the language was first conceived:

(a) Join-point selection for aspect-oriented programming, where
JTL can serve as a powerful substitute of ASPECTJ’s pointcut
syntax, and,

(b) expressing the conditions making up concepts, and in particular
multi-type concepts, for use in generic programming.

As JTL took shape and grew older it became clear it can be used
not only for language extension, but also for other software engi-
neering tasks, primarily as a tool to assist programmers understand
the code they must modify. This particular problem of program un-
derstanding even if it is far from being entirely solved by JTL, is
dear to our hearts: First, software development activities in indus-
try include (and probably more and more so) the integration of new
functionalities in existing code Second, maintenance remains a ma-
jor development cost factor.

JTL’s focus is on the modules in which the code is organized,
packages, classes, methods, variables, including their names, types,
parameters, accessibility level and other attributes. JTL can also in-
spect the interrelations of these modules, including questions such
as which classes exist in a given unit, which methods does a given
method invoke, etc. Additionally, JTL can inspect the imperative
parts of the code by means of dataflow analysis. The extension of
JTL to deal with with control-flow aspects of the code is left for
further research.

1.1 Three Introductory Examples

JTL syntax is terse and intuitive; just as in AWK [1], one-line
programs are abundant, and are readily wrapped within a single
string. In many cases, the JTL pattern for matching a JAVA program

89

element looks exactly like the program element itself. For example,
the JTL predicate1

public abstract void ()

matches all methods (of a given class) which are abstract, publicly
accessible, return void and take no parameters. Thus, in a sense,
JTL mimics the Query By Example [80] idea.

As in the logic paradigm, a JTL program is a set of predicate definitions,
one of which is marked as the program goal.

Even patterns which transcend the plain JAVA syntax should be
understandable, e.g.,
abstract class {

[long | int] field;
no abstract method;

}

matches abstract classes in which there is a field whose type is
either long or int and no abstract methods.

The first line in the curly brackets is an existential quantifier ranging
over all class members. The second line in the brackets is a negation of an
existential quantifier, i.e., a universal quantifier in disguise, applied to this
range.

JTL can also delve into method bodies, by means of intra-
procedural dataflow analysis, similar to that of the class file verifier.
Consider for example cascading methods, i.e., methods which can
be used in a cascade of message sends to the same receiver, as in
the following JAVA statement

(new MyClass()).f().g().h();

in which f, g and h are methods of MyClass. Then, the following
JTL pattern matches all cascading methods:
instance method {

all [!returned | this];
}

The curly brackets in the above pattern denote the set of values (including
temporaries, parameters, constants, etc.) that the method may generate or
use. The statement inside the brackets is a requirement that all such values
are either not returned by the method, or are provably equal to this, and
therefore guarantees that the only possible value that the method may return
is this.

1.2 Applications

The JTL interpreter (work on the compiler is in progress) can be
used in two ways: (i) as a stand-alone program; (ii) as a JAVA
library, an API, to be called directly from within any JAVA program,
in a manner similar to SQL . This API makes JTL useful in
implementing not only language extensions (such as a pointcut
evaluation engine for an AOP compiler), but also in various kinds
of software engineering tools, including searches in programs [61],
LINT-like tools [29, 48, 68], and pattern identification [33].

JTL’s ability to generate output text based on matched program
elements enables the use of JTL not only for search operations in
programs, but also for search-and-replace operations. A key appli-
cations for this ability is the context-aware renaming of program
elements [30].

The brevity of expression in JTL makes it suitable for inte-
gration as an interactive search language in an IDE. Also, a JTL
configuration file can specify to a compiler program elements on
which special optimization effort should be made, exclusion from
warnings, etc. Thus, what makes JTL unique as a “tool for mak-
ing tools”, are its suitability for direct user interaction, and begin a
small language for configuring other tools.

To an extent, JTL resembles TCL [65], the general purpose Tool
Command Language, except that JTL concentrates on language
processing.

1 The terms “predicate” and “pattern” are used almost interchangeably;
“pattern” usually refers to a unary predicate.

In evaluating JTL suitability for other applications we wrote
several collections of JTL patterns, the two largest being (i) the
implementation of the entire set of μ-patterns developed by two
of us [33] and (ii) the implementation of the entire set of Eclipse2

and PMD3 warning messages (with the exclusion of warnings per-
taining to source formatting and comments, since the current im-
plementation of JTL works on compiled classes). Other applica-
tions for which we used JTL included aspect pointcuts, and pre-
conditions for mixins and generics.

An Eclipse plugin for running JTL queries over JAVA projects
was implemented, and its performance was compared with that of
a similar plugin which uses JQuery [50] for querying JAVA code.

1.3 Underlying Model

Underlying JTL is a conceptual representation of a program in a
simply-typed relational database. The JTL user can think of the
interrogated JAVA program as a bunch of program elements stored
in such a database.

JTL is declarative, sporting the simple and terse syntax and se-
mantics of logic programming for making database queries. JTL
augments these with a number of enhancements that make it even
more concise and readable. Predicates are the basic programming
unit. The language features a set of native predicates (whose im-
plementation is external to the language), with a library of pre-
defined predicates built on top of the native ones. Many of the na-
tive and pre-defined predicates are conveniently named after JAVA
keywords.

Thus, the scheme of this database is defined by the set of
native JTL predicates. Standard library predicates and user-defined
predicates, defined on top of the natives, can be thought of as
database views or pre-defined queries.

Interestingly, JAVA (and many other software systems) are best
modeled as infinite databases. The reason is that in JAVA and in
almost all programming languages, one cannot hope to obtain all
user code which uses a certain code-bit stored in a software library.
Similarly, the list of classes that inherit from a given class is un-
bounded. This is quite the opposite of traditional database systems,
which rely on a finite, closed-world, model.

The JTL processor analyzes the queries presented to it, deter-
mining whether they are open-ended, i.e., the size of the result they
return is unbounded. (In practice, only a finite approximation of the
infinite database is stored. An open-ended query can be thought as
a query whose size increases indefinitely with that of the approxi-
mation.)

Note that this conceptual representation does not dictate any
concrete representation for the JTL implementation. JTL is appli-
cable to several formats of program representation, ranging from
program source code, going through AST representations, JAVA re-
flection objects, BCEL4 library entities, to strings representing the
names of program elements. In fact, JTL’s JAVA API is character-
ized by input- and output- data representation flexibility, in that JTL
calls can accept and return data in a number of supported formats.

We stress that JTL can be implemented in principle on top of
any source code parser, including the JAVA compiler itself.

Two central concerns in the language design were scalability
and the simplification of the idiosyncracies of logic programming.

We found, in accordance with the experience reported by Ha-
jiyev, Verbaere and More with their CodeQuest system [44], that
the underlying relational model, together with combinations of
bottom-up and top-down evaluation strategies that DATALOG [17]
makes possible, makes a major contribution to scalability.

2 http://www.eclipse.org
3 http://pmd.sourceforge.net
4 http://jakarta.apache.org/bcel

90

For the sake of elegance and brevity of expression, JTL features
specific constructs for set manipulation, quantification and other
means that eliminate much of the need for loops (recursive calls in
the logic programming world). As a result, unlike DATALOG and
PROLOG [25] queries, JTL predicates are defined by a single rule,
written in a handful of lines, and often in a single line.

Underlying JTL’s syntax and semantics is first order predicate
logic with no function symbols and augmented with transitive clo-
sures, denoted FOPL*. The first order logic represented by JTL is
restricted to finite structures (assuming a given database approxi-
mation). An inherent difficulty with FOPL** is that it allows one to
make cyclic and senseless statements such as “predicate p holds
if and and only if the negation of p holds.”. The language pre-
processor therefore restricts queries to to DATALOG with stratified
negation [77]. This allows us to be enjoy the theoretical advantages
of the formalism, including modular specification, polynomial time
complexity, and a wealth of query optimization techniques [39]. In-
deed, the JTL compiler under development will generate DATALOG
output for an industrial-strength DATALOG engine.

Nevertheless, our experience indicates that stratified negation
does not always sufficient expressive power. Currently, the query
analyzer of JTL fails to deal with queries. As a result, some of the
complex queries are not guaranteed to terminate.

An interesting contribution of this work is in demonstrating that
a simple query-by-example like syntax is possible for many tasks of
querying OO programs, and in showing that this syntax stands on a
solid theoretical ground. It may be possible to put together a JAVA-
like syntax for JAVA queries in an ad hoc fashion. The challenge we
took upon ourselves was the combination of the sound underlying
computational model and the query-by-example front end. Also, in
using a DATALOG-based model (and in contrast with PROLOG as
some other recent tools do) we achieve a termination guarantee, and
the wealth of theory on database query optimization for concrete
scalable implementation.

SQL, and more generally, the relational model was sometimes
used for software query [72]. However, as Consents, Mendelian and
Ryan [22] observed, program analysis frequently requires transitive
closure. This is the reason that JTL allows recursion, and is similar
in its computational expressive power to Consents et al.ś Graphing
system.

As the name suggests, JTL is specific to JAVA. In particular, the
bountiful class file format of JAVA, its extensive documentation and
the verification process, made it possible to carry out the JTL pro-
cessing on the binary- rather than on the source representation of a
program. Such processing of binaries is not possible in languages
such as C++ [73]. A port of JTL may therefore need to resort to
less efficient and more intricate processing of the source code.

Other issues involved in generalizing JTL ideas to other pro-
gramming languages and software model representations should
become clearer with the more detailed exposition. It should be ev-
ident for example, that the bulk of JTL can be easily adapted to
C# [46]. The most important non-portable part is the dataflow anal-
ysis, which cannot be complete in C#. The reason is that unlike
JAVA, the verification process of C# is only partial.

Outline Sec. 2 is a brief language tutorial, which shows how JTL
can be used to inspect the non-imperative aspects of JAVA code,
i.e., everything but the method bodies. Queries of the imperative
aspects of the code are the subject of Sec. 3. An explanation of the
semantics is then presented in Sec. 4.

Readers who are more interested in actual code may choose
to leap directly to Sec. 5, which presents some more advanced
applications and code samples.

Sec. 6 compares the performance of JTL with that of JQuery, a
JAVA query tool which uses a similar underlying paradigm. Sec. 7

elaborates further on the motivation, surveying existing systems
and discusses potential applications. Sec. 8 concludes.

2. The JTL Language
This section gives a brief tutorial of JTL, assuming some basic
familiarity with logic programming. The text refers only to the
inspection of the non-imperative aspects of the software. The next
section will build upon this description the mechanism for delving
into method bodies. Readers interested more in the underlying
semantics are encouraged to skip forward to Sec. 4, returning here
only for reference.

The main issues to note here are the language syntax, in which
a JAVA program element is matched by a JTL pattern which is
very similar in structure to that element (see Sec. 2.1), and the
extensions to the logic paradigm, specifically, arguments list pat-
terns (Sec. 2.2), transitive closure standard predicates (Sec. 2.3),
and quantifiers (Sec. 2.4) which make it possible to achieve many
programming tasks without recursion.

The two most important data types, what we call kinds, of JTL
are (i) MEMBER, which represents all sorts of class and interface
members, including function members, data members, construc-
tors, initializers and static initializers; and (ii) TYPE, which stands
for JAVA classes, interfaces, and enums, as well as JAVA’s
primitive types such as int.

Another important kind is SCRATCH, which, as the name sug-
gests, stands for a temporary value used or generated in the course
of computation of a method. Scratches originate from a dataflow
analysis of a method, and are discussed below at Sec. 3.

A JTL program is a set of definitions of named logical pred-
icates. Execution begins by selecting a predicate to execute as a
query.

As in PROLOG, predicate names start with a lower-case letter,
while variables and parameters names are capitalized. Identifiers
may contain letters, digits, or an underscore. Additionally, the final
characters of an identifier name may be “+” (plus), “*” (asterisk),
or “’” (single quote).

2.1 Simple Patterns

Many JAVA keywords are native patterns in JTL, carrying essen-
tially the same semantics. For example, the keyword int is also
a JTL pattern int, which matches either fields of type int or
methods whose return type is int. The pattern public matches all
public program elements, including public class members (e.g.,
fields) and public classes. Henceforth, our examples shall use these
keywords freely; no confusion should arise.

Not all JTL natives are JAVA keywords. A simple example is
anonymous, defined on TYPE, which matches anonymous classes.

Some patterns (like abstract) are overloaded, since they are
applicable both to types and members. Others are monomorphic,
e.g., class is applicable only to TYPE.

Another example is pattern type, defined only on TYPE, which
matches all values of TYPE. This, and the similar pattern member (defined
on MEMBER) can be used to break overloading ambiguity.

JTL has two kinds of predicates: native and compound. Native
predicates are predicates whose implementation is external to the
language. In other words, in order to evaluate native predicates, the
JTL processor must use an external software library accessing the
code. Native patterns hence are declared (in a pre-loaded configu-
ration file) but not defined by JTL.

In contrast, compound patterns are defined by a JTL expression
using logical operators. The pattern

public, int (2.1)
matches all public fields of type int and all public methods
whose return type is int. As in PROLOG, conjunction is denoted
by a comma. In JTL however, the comma is optional; patterns

91

separated by whitespace are conjuncted. Thus, (2.1) can also be
written as public int.

As a matter of style, the JTL code presented henceforth denotes
conjunction primarily by whitespace; commas are used mainly
for readability—breaking long conjugation sequences into subse-
quences of related predicates; Disjunction is denoted by a vertical
bar, while an exclamation mark stands for logical negation. Thus,
the pattern
public | protected | private

matches JAVA program elements whose visibility is not default,
whereas !public matches non-public elements.

Logical operators obey the usual precedence rules, i.e., negation
has the highest priority and disjunction has the lowest. Square
parenthesis may be used to override precedence, as in
!private [byte|short|int|long]

which matches non-private, integral-typed fields and methods.
A pattern definition names a pattern. After making the following

two definitions,
integral := byte | short | int | long;
enumerable := boolean | char;

the newly defined patterns, integral and enumerable, can be
used anywhere a native pattern can be, as in e.g.,
discrete := integral | enumerable

Beyond the natives, JTL has a rich set of pre-defined stan-
dard patterns, including patterns such as integral, enumerable,
discrete (as defined above), method, constructor (both with
the obvious semantics), the predicate
extendable := !final type

(matching classes and interfaces which may have heirs), predicate
overridable := !final !static method

(methods which may be overridden), and many more.

2.2 Signature Patterns

Signature patterns pertain to (a) the name of classes or members,
(b) the type of members, (c) arguments list, (d) declared thrown
exceptions, and (e) annotations (meta-data).

Name Patterns A name pattern is a regular expression preceded
by a single quote, or a previously-declared name. Standard JAVA

regular expressions5 are used, except that the wildcard character
is denoted by a question mark rather than a dot. Name literals
and regular expressions are quoted with single quotes. The closing
quote can be omitted if there is no ambiguity.

For example, void ’set[A-Z]?*’ method matches any
voidmethod whose name starts with “set” followed by an upper-
case letter.

If the name pattern does not contain any regular expression
operators, as in

toString_p := ’toString method; (2.2)
then the pattern can be made clearer by using a name statement
to declare toString as a member name and get rid of the quote.
Thus, an alternative definition of (2.2) is

name toString;
toString_p := toString method;

(2.3)

In truth, the above is redundant, since an implicit name statement pre-
declares all methods of the JAVA root class java.lang.Object.

Type Patterns Type patterns make it possible to specify the
JAVA type of a non-primitive class member. A type pattern is
a regular expression preceded by a forward slash , e.g., pattern
/java.util.?*/ method matches all methods with a return type
from the java.util package or its sub-packages. The closing
slash is optional.

5 as defined by java.util.regex.Pattern.

The distinction between type patterns and name patterns only
makes sense for members. In matching types, there is no such
distinction, and both kinds of literals can be used.

The forward slash is not necessary for type names which were
previously declared as such by a typename declaration. For exam-
ple,

typename java.io.PrintStream;
printstream_field := PrintStream field;

(2.4)

matches any field whose type is java.io.PrintStream.
The typename statement in (2.4) declares

java.io.Serializable as a name of a type, similarly to name
statement.

All the types (including classes, interfaces and enumerations)
declared in the java.lang package are pre-declared as type
names, including Object, String, Comparable, and the
wrapper classes (Integer, Byte, Void, etc.).

Here is a redefinition of toString_p pattern (2.3), which
ensures that the matched method returns a String.

toString_p := String toString method; (2.5)

Arguments List Patterns JTL provides special constructs which
all but eliminate recursion. An important example is arguments
list patterns, used for matching against elements of the list of
arguments to a method. (Internally, such lists are stored in a linked
list of elements of kind TYPE, using standard PROLOG-like head
and tail relations.)

The most simple argument list is the empty list, which matches
methods and constructors that accept no arguments. Here is a
rewrite of (2.5) using such a list:
toString_p := String toString();

(Note that the above does not match fields, which have no argument
list, nor constructors, which have no return type.)

An asterisk (“*”) in an arguments list pattern matches a se-
quence of zero or more types. Thus, the standard pattern
invocable := (*);

matches members which may take any number of arguments, i.e.,
constructors and methods, but not fields, initializers, or static ini-
tializers. An underscore (“_”) is a single-type wildcard, and can be
used in either the argument list or in the return type. Hence,

public _ (_, String, *); (2.6)
matches any public method that accepts a String as its sec-
ond argument, and returns any type. (Again, aonstructors fail to
match (2.6), since they have no return type.)

Other Signature Patterns There are patterns for matching the
throws clause of the signature, e.g.,
io_method := method

throws /java.io.IOException;

There are also patterns which test for the existence or absence
of specific annotations in a class, a field or a method, and for
annotation values. For example, the following pattern will match
all methods that have the @Override annotation:
@Override method

These are not discussed here in detail further in respect of space
limitations.

2.3 Variables

It is often useful to examine the program element which is matched
by a pattern. JTL employs variable binding, similar to that of
PROLOG, for this purpose. For example, by using variable X twice,
the following pattern makes the requirement that the two arguments
of a method are of the same type:
firstEq2nd := method (X,X);

92

Similarly, the pattern
return_arg := RetType (*, RetType, *);

matches any method whose return type is the same as the type of
one of its arguments.

Predicates Patterns are parameterless predicates. In general, it
is possible to define predicates taking any number of parameters.
As usual in logic programming, parameters are nothing more than
externally accessible variables. Consider for example the predicate

is_static[C] := static field _:C; (2.7)
which takes parameter C. When invoked with a specific value for
parameter C, pattern is_static matches only static fields of
that exact type.

Conversely, if the predicate is invoked without setting a specific
value for C, then it will assign to C the types of all static fields
of the class against which it is matched. The semantics by which
a parameter to a predicate can be used as either input or output is
standard in logic programming; the different assignments to C are
made by the evaluation engine.

Note however that since JTL uses a database-, DATALOG-like
semantics, rather than the recursive evaluation engine of PROLOG,
each type C satisfying (2.7) will show only once in the output, even
if there two or more fields of that type.

Native Predicates JTL has several native parameterized predi-
cates. The names of many of these are JAVA keywords. For exam-
ple, predicate implements[I] holds for all classes which imple-
ment directly the parameter I (an interface).

This is the time to note that the predicates implements[I] and
is_static[C], just as all other patterns presented so far, have a
hidden argument, the receiver, also called the subject of the pattern,
which can be referenced as This or #.

Other native predicates of JTL include members[M] (true
when M is one of This’s members, either inherited or defined),
defines[M] (true when M is defined by This), overriding[M]
(true when This is a method which overrides M), inner[C] (true
when C is an inner class of This), and many more.

The following example shows how a reference to This is used
to define a pattern matching what is known in C++ jargon as “copy
constructors”:

copy_ctor := constructor(T), T.members[This];
(2.8)
This example also shows how a predicate can be applied to a
subject which is not the default, by using a JAVA-like dot notation.

The copy_ctor predicate works like this: first, the pattern
constructor(T) requires that the matched item, i.e., This, is a
constructor, which accepts a single parameter of some type T. Next,
T.members[This] requires that This—the matched constructor—is a
member of its argument type T, or in other words, that the constructor’s
accepted type is the very type that defines it.

Literals, just as variables, can be used as actual parameters. For
example, class implements[M] matches any class that imple-
ments interface M, whereas
interface extends[/java.io.Serializable]

matches any interface that extends the Serializable interface.
The square brackets in an invocation of a predicate with a single

parameter are optional. The above could thus have also been written
as:
interface extends /java.io.Serializable

Moreover, since there is a clear lexical distinction between parame-
ters and predicates, even the dot notation is not essential for chang-
ing the default receiver. Thus,
copy_ctor := constructor(T), T members This;

is equivalent to (2.8).

Standard Predicates JTL also has a library of standard predi-
cates, many of which are defined as transitive closure of the native
predicates. Fig. 2.1 shows a sample of these.

Figure 2.1 Some of the standard predicates of JTL

inherits[M] := members[M] !defines[M];
container[C] := C.members[This];
precursor[M] := M.overriding[This];
implementing[M] := !abstract,

overriding[M] M.abstract;
abstracting[M] := abstract,

overriding[M] !M.abstract;
extends+[C] := extends[C] |

extends[C’] C’.extends+[C];
extends*[C] := C is This | extends+[C];
interfaceof[C] := C.class C.implements[This];
interfaceof+[C] := C.implements+[This];
interfaceof*[C] := C.implements*[This];

The figure makes apparent the JTL naming convention by which
the reflexive transitive closure of a predicate p is named p*, while
the anti-reflexive variant is named p+. The myriad of recursive def-
initions such as these saves much of the user’s work; in particular
it is rare that the programmer is required to employ recursion.

It is interesting to examine the “recursive” definition of one of
these predicates, e.g., extends+:
extends[C] | extends[C’] C’.extends+[C]

It may appear at first that with the absence of a halting condition,
the recursion will never terminate. A moment’s thought reveals that
this is not the case. Since JTL uses a bottom-up construction of
facts, starting at a fixed database, the semantics of this recursive
definition is not of stack-based recursive calls, but rather as dy-
namic programming, or work-list, approach for generating facts.

Predicate Name Aliases The name extends+ suggests that it is
used as a verb connecting two nouns. As mentioned above, we can
even write

C extends+ C’

But, the same predicate can be used in situations in which, given
a class C, we want to generate the set of all classes that it extends.
A more appropriate name for these situations is ancestors. It is
possible to make another definition

ancestors[C] := extends+[C];

To promote meaningful predicate names, JTL offers what is known
as predicate name aliases, by which the same predicate definition
can introduce more than one name to the predicate. Aliases are
written as an definition annotation which follows the main rule The
definition of extends+ has such an alias
extends+[C] := extends C |

extends C’, C’.extends+[C];
Alias ancestors;

The use for an alias named ancestors will become clear with the
presentation of predicate (2.10) below.

Native predicates can also have aliases, which are specified
along with their declaration.

2.4 Queries

As mentioned previously, JTL’s expressive power is that of FOPL*.
Although it is possible to express universal and existential quantifi-
cation with the constructs of logic programming, we found that the
alternative presented in this section is more natural for the particu-
lar application domain.

Consider for example the task of checking whether a JAVA class
has an int field. A straightforward, declarative way of doing that is
to examine the set of all of the class fields, and then check whether
this set has a field whose type is int.

93

The following pattern does precisely this, by employing a query
mechanism:

has_int_field := class members: {
exists int field;

};
(2.9)

Here, the query members: { Q1; · · · ; Qn } generates first the set
of all possible members M, such that #.members[M] holds. (The
“members:” portion of the query is called the generator.)

This set is then passed to Q1 through Qn, the quantifiers em-
bedded in the curly brackets. The entire query holds if all of these
quantifiers hold for this set.

In (2.9), there was only one quantifier: the JTL statement
exists int field is an existential quantifier which holds when-
ever the given set has an element which matches the pattern
int field.

The next example shows two other kinds of quantifiers.
class ancestors: {

all public;
no abstract;

};

(2.10)

The evaluation of this pattern starts by computing the generator.
In this case, the generator generates the set of all classes that the
receiver extends directly or indirectly, i.e., all types C for which
#.ancestors[C] holds. (Recall that ancestors is an alias for
extends+, defined above.) The first quantifier checks whether all
members of this set are public. The second quantifier succeeds
only if this set contains no abstract classes. Thus, (2.10) matches
classes whose superclasses are all public and concrete.

Quantifiers in JTL include also, many p holds if the queried set
has two or more elements for which pattern p holds; whereas one p
holds if this set has precisely one such element.

The existential quantifier is the most common; hence the
exists is optional. Also, a missing generator (in predicates whose
subject is a TYPE) defaults to the members: generator. Hence, a
concise rewrite of (2.9) is

has_int_field := class {
int field;

};
(2.11)

In the two examples shown here, the generator was a predicate
with a single named parameter and an implicit receiver. In such
cases, the generator generates a set of primitive values, which are
the possible assignments to the argument. However, in general, the
generator generates a relation of named tuples, and the quantifiers
are applied to the set of these tuples. We discuss the underlying
semantics of queries in greater detail in Sec. 4.

3. Queries of Imperative Code
The executional aspect of JAVA code remained beyond the descrip-
tion of JTL in the previous section. This aspect is primarily method
bodies, but also other imperative code, including constructors, field
initializers and static initializers.

Now that the bulk of the language syntax is described, we can
turn to the question of queries of imperative entities. To an extent,
queries of these entities are mostly a matter of library design rather
than a language design. Recall that JTL native predicates are imple-
mented as part of the supporting library that the JTL processor uses
for inspecting JAVA code. Extending this library, without changing
the JTL syntax, can increase the search capabilities of the language.

Sec. 3.1 shows how by adding a set of native predicates, JTL
can be extended to explore an abstract syntax tree representation
of the code. This section also explains why this extension was not
implemented yet. We chose instead to implement a pedestrian set
of natives that make it possible to explore the fields and methods
that executional code uses, as described in Sec. 3.2. The more so-

phisticated mechanism that JTL uses for inspecting method bodies
is through a dataflow analysis, as described in Sec. 3.3.

3.1 Abstract Syntax Trees and JTL

Executional code can be represented by an abstract grammar, with
non-terminal symbols for compound statement such as if and
while, for operations such as type conversion, etc. One could
even think of several different such grammars, each focusing on
a different perspective of the code.

Code can be represented by an abstract syntax tree whose struc-
ture is governed by the abstract grammar. To let JTL support such
a representation, we can add a new kind, NODE, and a host of native
relations which represent the tree structure. For example, a native
binary predicate if can be used to select if statement nodes and
the condition associated with it; a binary predicate then can se-
lect the node of the statement to be executed if the if condition
holds; another binary predicate, else, may select the node of the
statement of the other branch, etc.

As an example of an application for such a representation,
consider a search for cumbersome code fragments such as
if (C)

return true;
else

return false;

with the purpose of recommending to the programmer to write
return C;

instead. The following pattern matches such code:
boolean_return_recommendation :=

if[_] then[S1] else[S2],
S1.return[V1], S2.return[V2],
V1.literal["true"],

V2.literal["false"];

The above pattern should be very readable: we see that its receiver
must be a NODE which is an if statement, with a don’t-care condi-
tion (i.e., _), which branches control to statements S1 and S2; also
both S1 and S2 must be return statements, returning nodes V1
and V2 respectively. Moreover, the patterns requires that nodes V1
and V2 are literal nodes, the first being the JAVA true literal, the
second a false.

In principle, such a representation can even simultaneously sup-
port more than one abstract grammar. Two main reasons stood be-
hind our decision not to implement, or even define (at this stage),
the set of native patterns required for letting JTL explore such a
representation of the code.

1. Size. Abstract grammars of JAVA (just as any other non-toy
language) tend to be very large, with tens and hundreds of non-
terminal symbols and rules. Each rule, and each non-terminal
symbol, requires a native definition, typically more than one.
The effort in defining each of these is by no means meager.

2. Utility. Clearly, an AST representation can be used for repre-
senting the non-imperative aspects of the code. The experience
gained in using the non-AST based representation of JTL for
exploring these aspects, including type signatures, declaration
modifiers, and the interrelations between classes, members and
packages, indicated that the abstraction level offered by an ab-
stract syntax tree is a bit too low at times.

A third, (and less crucial) reason is that it is not easy (though not
infeasible) to elicit the AST from the class file, the data format used
in our current implementation.

3.2 Pedestrian Code Queries

In studying a given class, it is useful to know which methods use
which fields. The following JTL pattern, for example, implements

94

one of Eclipse’s warning situations, in which a private member is
never used.

unused_private_member := private field,
This is F,
declared_in C, C inners*: {

all !access[F];
}

The pattern fetches the class C that defines the field, and then
uses the reflexive and transitive closure of the inner relation, to
examine C, its inner classes, their inner classes, etc., to make sure
that none of these reads or writes to this field. (The unification
(This is F) is for making the receiver field accessible inside the
curly brackets.)

The pattern access showing in the penultimate line of the
example is defined in the JTL library. The definition, along with
some of the other standard patterns that can be used in JTL for
what we call pedestrian code queries is shown in Fig. 3.1. Such
queries model the method body as an unordered set of byte-code
instructions, checking whether this set has certain instructions in it.

Figure 3.1 Standard predicates for pedestrian code queries

access[F] := read F | write F; Alias accesses;
read[F] := offers M, M read F; Alias reads;
write[F] := offers M, M read F; Alias writes;

calls[M] := invokes_interface[M] |
invokes_virtual[M] |

invokes_static[M] |
invokes_special[M];

Alias invokes, invoke;

use[X] := access[M] | invoke[M]; Alias uses;

In the figure we see that the definition of access is based on
the overloaded predicates read and write. The native predicate
read[F] (respectively write[F]) holds if the receiver is a method
whose code reads (respectively writes to) the field F. The second
(respectively the third) line of the figure, overloads the native def-
inition of read (respectively write), so that it applies also to re-
ceivers whose kind is TYPE.

The figure also makes uses of the four other pedestrian natives
for inspecting code: invokes_interface, invokes_virtual,
invokes_static, and invokes_special. (These natives also
have aliases identical to the bytecode mnemonics.)

With this minimal set of six natives, several interesting patterns
can be defined. For example, predicate
creates[T] := invokes_static[M], M.ctor,

M.declared_in[T];

is true when the receiver creates an object of type T. Also, the
following predicates test whether a method refines its precursor
refines[M] := overrides[M] invokes_special[M];
refines := refines[_]; Alias refiner;

The following predicate checks whether a method is not empty
does_something := !void | invokes[_] |

writes[_];

(If a method does not return a value, does not invoke any other
method, nor write to a field, then it must have no meaningful
effect.) With the above, we implemented an interesting PMD rule,
signalling an unnecessary constructor, i.e., the case that there is
only one constructor, it is public, has an empty body, and takes
no arguments.
unnecessary_constructor := class {

constructor => public () !does_something;
}

The following predicate identifies a case that a constructor calls
another constructor C of class T.

c_call[C,T] := constructor invokes_special[C]
C.constructor C.declared_in[T]

With this predicate, we can present three rules which identify the
different ways that a constructor may begin its mission in JAVA.
c_delegation[C] := // First line is ‘‘this(...)’’

declared_in[MyClass] c_call[C,MyClass];
c_refinement[C] := // First line is ‘‘super(...)’’

declared_in[MyClass] c_call[C,Parent],
MyClass.extends[Parent];

c_handover[C] := // Either
ctor_delegation[C] | ctor_refinement[C];

3.3 Dataflow Code Queries

As a substitute to AST queries and at a higher level of abstrac-
tion than the pedestrian queries, stand dataflow code queries. In the
course of execution of imperative entities many temporary values
are generated. Dataflow analysis studies the ways that these values
are generated and transferred. The idea is similar to dataflow anal-
ysis as carried out by an optimizing compiler [2, Sects. 10.5–10.6],
or by the JAVA bytecode verifier [55, Sec. 4.92].

3.3.1 Scratches for Dataflow Analysis

To implement dataflow analysis, we introduce a new JTL kind,
SCRATCH, which represents what is called in the compiler lingo
a “variable definition”, i.e., an assignment to a temporary variable.
In JAVA we find two categories of temporary variables on what is
called a “method frame”:

1. A location in the “local variables array”, including the loca-
tions reserved in this array for method parameters, and in par-
ticular the “this” parameter of instance methods, as well as
local variables that an imperative entity may define.6

2. A location in the “operands stack”, used for storing temporary
variables in the course of the computation.

As usual with dataflow analysis, there is a fresh scratch for each
assignment to a temporary variable. Also, scratches are generated
on a merge of control flow. A scratch is anonymous; it does not
carry with it its location in the frame.

An assignment to a scratch can be from one of the following
sources: another scratch, an input parameter value, a constant, a
field, a value returned from a method or a code entity, an arithmeti-
cal operation, or a thrown exception. A scratch can be assigned to
another scratch, passed as a parameter, assigned to a field, thrown
or returned.

The dataflow analysis is implemented at the class file level.
Obviously, this can only be done with a non-optimizing compiler,
which makes a lossless translation of the source dataflow into an
equivalent dataflow of the intermediate or target language. Luckily,
the standard JAVA compiler obeys this requirement.

It should be clear that the dataflow information and analysis we
carry is also feasible by starting from the source level, generating
temporaries for all intermediate values.

On the other hand, it should be noted that JAVA semantics and
tradition also helped in making our dataflow analysis more effec-
tive; among the contributing factors we can mention the tendency
to use short methods, the requirement that all locals are initialized
before they are uses, call-by-value semantics, no pointer arithmetic,
our decision to ignore arrays, etc.

6 Note that the verification process guarantees that we can treat two adjacent
locations which are used for storing a long or double variables.

95

3.3.2 Using Scratches

The following pattern, capturing the authors’ understanding of the
notion of setter, gives a quick taste of the manner of using data flow
information in JTL.
setter := void instance method(_) !calls[_] {
putfield[_,_] => parameter;
one putfield[_,_];
putfield[_,Ref] Ref.this.
no [putstatic[_] | get[_] | compared];

};

The first line in the above requires that the receiver is a void instance
method, taking a single parameter, and (by using a pedestrian predicate)
that it calls no other methods. The predicates in the curly brackets make
the following requirements in order: (i) all assignments to a field are of
a scratch that is provably equal to the single parameter of the method;
(ii) there is precisely one assignment to an instance field in the method;
(iii) this assignment is to a field using an object reference which is provably
equal to the this implicit parameter of the method; and that (iv) there are
no assignments to a static field, nor field retrievals, nor a comparison in the
method.

The example shows that the formulation of data flow require-
ments is not so simple. Moreover, the precise notion of a setter
is debateable. We argue that JTL’s terse, English-like syntax, aug-
mented with the natural coding of work-list algorithms in the logic
paradigm, help in quick testing and experimenting with patterns
such as the above.

Dataflow analysis is a large topic, and its application in JTL
involves about three dozens of predicates. We can only give here a
touch of the structure of JTL’s predicates library and the patterns
that can be written with it.

Tab. 1 lists the essential native unary predicates defined on
scratches. The predicates are obtained by a standard (conservative)
dataflow analysis similar to that of the verifier does. Thus, predicate
parameter holds for all scratches which are provably equal to a
parameter, nonnull for temporaries which are provably non-null,
etc.

Table 1. Native unary predicates of scratches
Predicate Meaning

parameter a method parameter stored in the LVA
constant a constant

null the null constant
nonnull cannot be the null constant

temp an operand-stack scratch
this equal to parameter 0 of an instance method
local an (uninitialized) automatic variable in the LVA

returned returned by the code
athrow thrown by the code
caught obtained by catching an exception

compared compared in the code

The native binary predicate scratches[S] (also aliased as
has_scratch) holds if S is a scratch of the method This, and
serves as the default generator of methods. Hence, the curly brack-
ets in the pattern
instance method {

returned => this;
}

iterate over all scratches of a given method, checking that every
scratch returned by the method is equal to the this parameter.
Also, the binary predicate typed[T] holds if T is the type of the
scratch # (This). The following pattern returns the set of all types
that a method uses:
use_types[T] := method has_scratch[S]

S.typed[T];

The most important predicate connecting scratches is from[S],
which holds if scratch S is assigned to scratch #. Similarly,
func[S] holds if # is computed by an arithmetical computation.
We also have the definition
depend[S] := func[S] | from[S];

As usual, from*, func* and depend* denote the reflexive transi-
tive closure of from, func and depend.

There is also a native predicate for each of the four bytecode in-
structions used for accessing fields. For example, the binary predi-
cate putstatic[F] holds if the scratch # is assigned to static
field F, while getfield[F,S] holds if # is retrieved from field
F with scratch S serving as object reference.

In addition, there are two predicates for each of the instruc-
tions for method calling, e.g., a predicate invokespecial[M,S]
holds if scratch # is used as an argument to a call of method
M, where scratch S serves as the receiver, and a predicate
get_invokestatic[M] which holds if # obtains its value from
a static call to method M.

For a given scratch there is typically more than one S, such that
from[S], or from*[S] holds 7. Dealing with this multiplicity of
dataflow analysis is natural to DATALOG programming. For exam-
ple, pattern dead identifies dead scratches, i.e., scratches whose
values are never used:
unassigned := !put[_] ! [_.from[#] |

_.func[#] | . . . etc.];
dead := !compared unassigned ;

The following predicate selects all sources of values that may be
assigned to a scratch:
origins[S] := from*[S],

[S.parameter | S.constant | S.get[_]];

In words, origins[S] holds if S is a port of entry of an external
value which may eventually be assigned to #. We can now write a
pattern which determines whether a method returns a constant.
constant_method := method {

one returned;
returned => origins: { all constant; }

}

Using an overloaded version of from[X] which holds if # obtains
its value either from a field X or from a call to method X, it
is mundane to extend the above pattern to match also method
returning a final field. It should also be obvious that dataflow
analysis provides enough information so that the implementation
of pattern capturing, say, a getter notion, or even the selection of
fields, is not too difficult.

The native predicate locus[S] holds if S and # are distinct
scratches which are stored in the same location on the frame. This
predicate is used in Fig. 3.2, together with dead and unassigned
in a bunch of predicates which implement several PMD advices. .

Figure 3.2 Implementation of some PMD warnings with scratches

changed_parameter := parameter locus[_];
multiple_returns := method returns: { many; };
null_assignment := from[C], C.null;
unread_parameter := dead parameter;
flag_parameter := unassigned compared parameter;
unassigned_local := local locus: { empty };
unused_local := dead local;

7 other than in linear methods, i.e., methods whose control flow contains no
branch statements

96

4. Underlying Semantics
As stated above, JTL belongs to the logic programming paradigm.
This section explains how the JTL constructs are mapped to famil-
iar notions of the paradigm.

In a nutshell, JTL is a simply typed formalism whose underlying
semantics is first order predicate logic augmented with transitive
closure (FOPL*). Evaluation in JTL is similar to that of PROLOG
(more precisely, DATALOG), with its built-in support for the “join”
and “project” operations of relational databases. This section elab-
orates the language semantics a bit further.

Kinds and Predicates The type system of JTL consists of a fixed
finite set of primitive kinds (types) T . There are no compound
kinds.

A predicate is a boolean function of T1 × · · · × Tn, n ≥ 0,
where Ti ∈ T for i = 1, . . . , n. A predicate can also be thought of
as a relation, i.e., a subset of the cartesian product

T1 × · · · × Tn,

called the domain of the predicate. By convention, the first ar-
gument of a predicate is unnamed, while all other arguments are
named. The unnamed arguments is called the receiver or the sub-
ject.

Native Predicates JTL has a number of native predicates,
such as class—a unary predicate of TYPE, i.e., class ⊆
TYPE, synchronized ⊆ MEMBER (the predicate which
holds only for synchronized methods), members ⊆ TYPE ×
MEMBER, extends ⊆ TYPE × TYPE (with the obvious seman-
tics), and the 0-ary predicates false (an empty 0-ary relation) and
true (a 0-ary relation consisting of a single empty tuple). Built-in
predicates are called in certain communities Extensional Database
(EDB) predicates.

A run of the JTL processor starts by loading a declaration of ar-
ity and argument types of all native predicates from a configuration
file. Native declarations are nothing more than definitions without
body. For example, the following commands in a configuration file
MEMBER.int;

states that int is a unary predicate such that int ⊆ MEMBER.

Compound Predicates Conjunction, disjunction and negation
can be used to define compound predicates from the built-ins. Also
permitted, are quantification as explained in Sec. 2 and transitive
closure, i.e., recursion as in
extends+[X] := extends X |

extends[Y] Y.extends+[X];

The language offers an extensive library of pre-defined of stan-
dard compound predicates. Compound predicates are sometimes
called Intensional Database (IDB) predicates.

Finite Databases To run, a JTL program requires a database
which conforms to the natives, i.e., it must have in its schema the
relations or the EDBs as dictated by the set of natives defined by
the JTL implementation at hand.

The simplest way to supply a database is by specifying to the
JTL processor a finite set of classes and methods, e.g., a “.jar”
file. Obviously, such a collection does not directly represent any
EDBs. EDBs are realized on top of the collection by means of a
bytecode analysis library.

Alternatively, a finite database can also be provided by supply-
ing a finite set of legal JAVA source files. The native relations are
then realized on top of these by a JAVA parser.

JTL queries can also be run without a fixed input set. Such a
situation, can be thought of as a DATALOG query over an infinite
database.

Evaluation Order Unlike PROLOG, the order of evaluation in
JTL is unimportant. The output set of a pattern is the same re-
gardless of the order by which its constituent predicates in it are
invoked. Predicates have no side-effects, and all computations (on
finite databases) terminate.

The simplest way to compute the output set is bottom-up, i.e.,
by using a work-list algorithm which uses the program rules to
compute all tuples in all IDBs used by the program goal. This
process, although guaranteed to terminate, can be very time- and
space-inefficient. JTL instead analyzes queries and applies, when-
ever possible, a more efficient top-down evaluation strategy

Overloading and Kind Inference The JTL processor includes a
kind inference engine which, based on the kind of arguments and
arity of the native predicates, infers arity and arguments kinds of
predicates defined on top of these. For example, the definition

real := double | float; (4.1)
implies that real ⊆ MEMBER.

JAVA’s overloading of keywords carries through to JTL, e.g.,
since the JAVA keyword final can be applied to classes and mem-
bers, the built-in predicate final in JTL is overloaded, denoting
two distinct relations: final1 ⊆ TYPE and final2 ⊆ MEMBER.
Many native predicates are similarly overloaded; JTL infers over-
loading of compound predicates. For example, the conjunction of
final and public is overloaded; the conjunction of final and
interface is not.

The Default Receiver As seen in the last examples, JTL sports
an implicit mechanism of applying a predicate to receiver. For
example, the above definition of real could have been written as

real := #.double | #.float; (4.2)

Named Arguments The signature of a relation is an or-
dered pair 〈R,A〉, whose first component, R ∈ T , defines
the type of the receiver, while the second component, A =
{〈�1, A1〉, . . . 〈�m, Am〉}, defines the names of the arguments (the
labels �j , j = 1, . . . , m, must be distinct) and their types (Aj ∈ T
for j = 1, . . . , m).

A row of a relation is in general a named tuple, i.e., a tuple of
values, where all but the first carrying labels, such that the types of
these values and the labels they carry match exactly the signature
of the predicate.

Predicates are characterized by signature, e.g., the signature of
predicate members is

�
TYPE, {〈“M”, MEMBER〉}

�
, while the defini-

tion
container[C] := C.members[#]

implies
�
MEMBER, {〈“C”, TYPE〉}

�

as the signature of container. Overloaded predicates have mul-
tiple signatures, one for each meaning. For example, the built-in
predicate final has two signatures,

�
MEMBER, ∅

�
and

�
TYPE, ∅

�
.

Baggage In addition to the receiver and to the named parameters,
every JTL predicate has another hidden output parameter. The term
baggage is used for this parameter since its computation is done
behind the scenes, without programmer intervention, and further,
in many cases it is eliminated by the JTL processor.

The baggage parameter is always of kind STRING, and it de-
faults, in most predicates, to the predicate name. So, the returned
baggage of the predicate public is simply the string "public",
the baggage of a regular expression matching the name of a field or
a method is the name of that class member.

Also, by default, the baggage a conjunction is the concatena-
tion of the components’ baggage, in the order these component ap-
pear. The returned baggage of predicate public int is therefore

97

the string "public int". The default baggage of most other con-
structs for making compound predicates is simply the empty string.

Although in principle, a programmer may override the baggage
value, and even check it, current support for doing so in JTL is
minimal.

Set Expressions JTL extends logic programming with what we
call a query, which is a predicate whose evaluation involves the
generation of a temporary relation, and then applying various set
expressions (e.g., quantifiers) to this relation. A query predicate
is true if all the set conditions hold for the generated temporary
relation.

The predicate defined in Fig. 4.1 tries to check that a class is
“classical”, i.e., that it has at least one field, two or more methods,
that all methods are public, all fields are private, that there are no
static fields or methods, and that the sets of “setters” and “getters”
of this class are disjoint.

Figure 4.1 A JTL predicate for matching “classical class” notion.

classical := class members: {
has field;
many method;
no static;
method => public;
field => private;
disjoint setter, getter;

}

(The definition in the figure assumes that predicates setter and
getter were previously defined.)

The essence of the example is the generator of the temporary
relation, written as members:. The colon character (:) appended to
predicate members makes it into a generator. JTL generates the set
of all members M, such that #.members[M] holds. This set, which
can be also thought of as a relation with only one unnamed column,
is subjected to the set expressions inside the curly brackets.

Six conditions are applied to this set: the first is an existential
quantifier (has is synonymous to exists) requiring that at least
one element in the generated set satisfies the field condition,
i.e., that the class has at least one field. The second condition
similarly requires that method holds to two more members. The
3rd condition, as should be obvious, requires that this set does not
contain any static members.

The 4th condition is a set expression requiring that the predicate
method implies public holds in this set, i.e., that method members
are public. The 5th condition similarly states that the set of field
members is a subset of the set of private members. Finally, the
set expression disjoint setter, getter requires that the two
subsets obtained by applying predicates setter and getter to the
set of class members are disjoint.

5. Applications
Having presented the JTL syntax, the language’s capabilities and its
underlying semantics, we are in a good position to describe some
of the applications.

5.1 Integration in CASE Tools and IDEs

In their work on JQuery, Janzen and De Volder [50] make a strong
case, including empirical evidence, for the need of a good software
query tool as part of the development environment.

As detailed below in Sec. 7.1 and demonstrated by Tab. 2, the
querying (but not the navigational) side of JQuery can be replaced
and simplified by JTL.

We have developed an Eclipse plug-in that runs JTL queries
and presents the result in a dedicated view. Fig. 5.1 shows an
example: the program (which appears above the results) found all

classes in JAVA’s standard library for which instances are obtained
using a static method rather than a constructor. Using JTL,

Figure 5.1 Screenshot of the result view of JTL’s Eclipse plugin

many searches can be described intuitively. For example, to find
all classes that share a certain annotation @X, the developer simply
searches for @X class. The similarity between JTL syntax and
JAVA declarations will allow even developers who are new to JTL
to easily and effectively sift through the overwhelming number of
classes and class members in the various JAVA libraries.

JTL can also be used to replace the hard-coded filtering mecha-
nism found in many IDEs (e.g., a button for showing only public
members of a class) with a free-form filter. Fig. 5.2 is a mock
screenshot that shows how JTL can be used for filtering in Eclipse.

Figure 5.2 Using JTL for filtering class members (mock)

Finally, JTL can be used for search-and-replace operations.
Since the operation is context-sensitive, there is no risk of, e.g.,
changing text that appears in comments. With the current version of
JTL, this is limited to changing class and method signatures, and is
therefore less powerful than Eclipse’s built-in refactoring facilities.
However, unlike these facilities, the changes that JTL allows are
open-ended and not limited to a pre-defined set of operations.

For example, the following JTL program will make every
method called getLock() synchronized, without changing any
other part of the method’s signature:
!synchronized getLock()

[* synchronized #sig *]

Currently, JTL has only rudimentary support for program transforma-
tion. In particular, as explained above, every JTL predicate returns a bag-
gage string which can be used for producing output. This returned value,
may be used to generate a replacement program fragment, although JTL
does not offer still means for ensuring that it is indeed syntactically valid
string.

By default, this returned string is the predicate name. As shown above,
the construct [* S *], where S is a string expression can be used
to change this default. In the example the returned value is the string
synchronized #sig, where sig is a library predicate that returns the
member’s signature as a valid JAVA source fragment.

98

5.2 Specifying Pointcuts in AOP

The limited expressive power of the pointcut specification language
of ASPECTJ (and other related AOP languages, e.g., CAESAR [59]
and ASPECTJ2EE [21]), has been noted several times in the litera-
ture [42, 64].

We propose that JTL is integrated into AOP processors, tak-
ing charge of pointcut specification. To see the benefits of using a
JTL component for this purpose, consider the following ASPECTJ
pointcut specification:
call(public void *.set*(*));
JTL’s full regular expressions syntax can be used instead, by first
defining

setter := public void ’set[A-Z]?*’(_); (5.1)
and then writing call(setter). Unlike the ASPECTJ ver-
sion, (5.1) uses a proper regular expression, and therefore does not
erroneously match a method whose name is, e.g., settle().

Fig. 5.3 presents an array of ASPECTJ pointcuts trapping read
and write operations of primitive public fields. Not only tedious,
it is also error prone, since a major part of the code is replicated
across all definitions.
Figure 5.3 An ASPECTJ pointcut definition for all read- and write-access
operations of primitive public fields.

get(public boolean *) || set(public boolean *) ||
get(public byte *) || set(public byte *) ||
get(public char *) || set(public char *) ||
get(public double *) || set(public double *) ||
get(public float *) || set(public float *) ||
get(public int *) || set(public int *) ||
get(public long *) || set(public long *) ||
get(public short *) || set(public short *);

By using disjunction in JTL expressions, the ASPECTJ code
from Fig. 5.3 can be greatly simplified if we allow pointcuts to
include JTL expressions:
primitive := boolean | byte | char | double |

float | int | long | short;
ppf := public primitive field;

get(ppf) || set(ppf); // JTL−based AspectJ pointcut

The ability to name predicates, specifically ppf in the example,
makes it possible to turn the actual pointcut definition into a con-
cise, readable statement.

The following is an example of a condition that is impossible to
specify in ASPECTJ:

setter := public void ’set[A-Z]?*’(_);
boolean_getter = boolean ’is[A-Z]?*’();
other_getter = !boolean !void ’get[A-Z]?*’();
getter := public

[boolean_getter | other_getter];

field_in_plain_class := public field,
declare_in[C], C.members: {

no getter;
no setter;

};

Condition field_in_plain_class holds for public fields in
a class which has no getters or setters. This requirement is realized
by predicate container, which captures in C the container class.
A query is then used to examine the other members of the class.

The above could have been implemented in other extensions
of the ASPECTJ pointcut specification language, but not without a
loop or a recursive call.

Our contribution puts the expressive power of JTL at the dis-
posal of ASPECTJ and other aspect languages, replacing the some-
times ad-hoc pointcut definition language with JTL’s systematic ap-
proach. There are two limitations in doing that: First, JTL can only

be used to make queries on the program static structure, and not on
the dynamic control flow. The second limitation is more technical:
although JTL queries can be easily made from an JAVA program,
there is no sufficient API for the client code to intervene in the
parsing process, pass error messages, etc.

5.3 Concepts for Generic Programming

In the context of generic programming, a concept is a set of con-
straints which a given set of types must fulfil in order to be used
by a generic module. As a simple example, consider the following
C++ template:

template<typename T>
class ElementPrinter {
public:

void print(T element) {
element.print();

}
}

The template assumes that the provided type parameter T has a
method called print which accepts no parameters. Viewing T as
a single-type concept [31,74], we say that the template presents an
implicit assumption regarding the concept it accepts as a parame-
ter. Implicit concepts, however, present many problems, including
hurdles for separate compilation, error messages that Stroustrup et
al. term “of spectacular length and obscurity” [74], and more.

With Java generics, one would have to define a new interface
interface Printable { void print(); };

and use it to confine the type parameter. While the concept is now
explicit, this approach suffers from two limitations: first, due to
the nominal subtyping of JAVA, generic parameters must explicitly
implement interface Printable; and second, the interface places
a “baggage” constraint on the return type of print, a constraint
which is not required by the generic type.

Using JTL, we can express the concept explicitly and without
needless complications, thus:

(class | interface) { print(); };

There are several advantages for doing that: First, the underlying
syntax, semantics and evaluation engine are simple and need not
be re-invented. Second, the JTL syntax makes it possible to make
useful definitions currently not possible with JAVA standard gener-
ics and many of its extensions.

The problem of expressing concepts is more thorny when mul-
tiple types are involved. A recent work [31] evaluated genericity
support in 6 different programming languages (including JAVA, C#

and EIFFEL [49]) with respect to a large scale, industrial strength,
generic graph algorithm library, reaching the conclusion that the
lack of proper support for multi-type concepts resulted in awkward
designs, poor maintainability, and unnecessary run-time checks.

JTL predicates can be used to express multi-type concepts, and
in particular each of the concepts that the authors identified in this
graph library.

As an example, consider the memory_pool concept, which is
part of the challenging example the concepts treatise used by Garcia
et al. A memory pool is used when a program needs to use several
objects of a certain type, but it is required that the number of
instantiated objects will be minimal. In a typical implementation,
the memory pool object will maintain a cache of unused instances.
When an object is requested from the pool, the pool will return a
previously cached instance. Only if the cache is empty, a new object
is created by issuing a create request on an appropriate factory
object.

More formally, the memory pool concept presented in Fig. 5.4
takes three parameters: E (the type of elements which comprise the
pool), F (the factory type used for the creation of new elements),
and This (the pool type).

99

Figure 5.4 The memory_pool concept

name create, instance, acquire, release;

factory[E] := (class | interface) {
public constructor ();
public E create();

};

memory_pool[F,E] := equals[T] {
public static T instance();
public E acquire();
public release(E);

}, F.factory[E];

The body of the concept requires that This will provide
acquire() and release() methods for the allocation and
deallocation (respectively) of E objects, and a static instance()
method to allow client code to gain access to a shared instance of
the pool. Finally, it requires (by invoking the Factory predicate)
that F provides a constructor with no arguments, and a create()
method that returns objects of type E.

As shown by Garcia et al., the requirements presented in Fig. 5.4
have no straightforward representation in JAVA, C# or EIFFEL. In
particular, using an interface to express a concept presents ex-
traneous limitations, such as imposing a return type on release,
and it cannot express other requirements, such as the need for a
zero-arguments constructor in a factory. Using an interface
also limits the applicable types to those that implement it,
whereas the concept itself places no such requirement.

In a language where JTL concept specifications are supported, a
generic module parameterized by types X, Y and Z can declare, as
part of its signature, that X.memory_pool[Y,Z] must hold. This
will ensure, at compile-time, that X is a memory pool of Z elements,
using a factory of type Y8.

Concepts are not limited to templates and generic types. Mix-
ins, too, sometimes have to present requirements to their type pa-
rameter. The famous Undo mixin example [5] requires a class that
defines two methods, setText and getText, but does not de-
fine an undo method. The last requirement is particularly impor-
tant, since it is used to prevent accidental overloading. However,
it cannot be expressed using JAVA interfaces. The following JTL
predicate clearly expresses the required concept:

undo_applicable := class {
setText(String);
String getText();
no undo();

};

In summary, we propose that in introducing advanced support
of genericity and concepts to JAVA, one shall use the JTL syntax
as the underlying language for defining concepts. In addition to the
two benefits listed above (simple semantics and evaluation, useful
definitions not possible in standard JAVA), using JTL also puts
intriguing questions of type theory in the familiar domain of logic,
since, as mentioned earlier, JTL is based on FOPL*. For example,
the question of one concept being contained in another can be
thought of as logical implication. Using text book results [15], one
can better understand the tradeoff between language expressiveness
and computability or decidability. We are currently working on
defining a JTL sub-language, restricting the use of quantifiers,
which assures decidability of concept containment.

8 Thus, concepts may be regarded as the generic-programming equivalence
of the Design by Contract [58] philosophy

5.4 Micro Patterns

A μ-pattern is just like a design pattern, except that it is mechan-
ically recognizable. Previous work on the topic [33] presented a
catalog of 27 such patterns; the empirical work (showing that these
patterns matched about 3 out of 4 classes) was carried out with a
custom recognizer. To evaluate JTL, we used it to re-code each of
the patterns.

Fig. 5.5 shows the JTL encoding of the Trait pattern (somewhat
similar to the now emerging traits OO construct [69]). In a nutshell,
a trait is a base class which provides pre-made behavior to its heirs,
but has no state.

The code in Fig. 5.5 should make the details of the pattern
obvious: A trait is an abstract class with no instance fields, at
least one abstract method, and at least one public concrete instance
method which was not inherited from Object.

Figure 5.5 The Trait µ-pattern

trait := abstract {
no instance field;
abstract method;
public concrete instance method

!declared_in[Object];
}

A programming language researcher could type in the pattern of
Fig. 5.5 to quickly find out how many classes in a certain program
base are candidates to be implemented as traits.

This example also demonstrates how queries simplify the code. The
equivalent PROLOG predicate would have required three recursive calls,
probably with the use of auxiliary predicates to implement the three quan-
tifiers in the query.

All patterns were similarly implemented; the specification was
never longer than 10 lines. In the course of doing so, we were able
to quickly detect ambiguities in the initial textual definition, and
check the correctness of the ad-hoc recognizers.

5.5 LINT-like tests.

JTL can be used to express, and hence detect, many undesired pro-
gramming constructs and habits. On the one hand, JTL’s limitation
with regard to the inspection of method bodies implies that it cannot
detect everything that existing tools [29, 48, 68] can. In its current
state, as discussed in Sec. 3.1, JTL cannot detect constructs such as

if (C) return true else return false;

nor can it easily express numeric limitations (e.g., detecting classes
with more than k methods for some constant k).

Yet on the other hand, JTL’s expressiveness makes it easy for
developers and project managers to improvise and quickly define
new rules that are both enforceable and highly self-documenting.

To test this prospect, we a collection of JTL patterns that im-
plement the entire set of warnings issued by Eclipse and PMD
(a popular open source LINT tool for JAVA). The only exceptions
were those warnings that directly rely on the program source code
(e.g., unused import statements), as these violations are not rep-
resented in the binary class file, that we used.

For example, consider the PMD rule LOOSECOUPLING. It de-
tects cases where the concrete collection types (e.g., ArrayList
or Vector) are used instead of the abstract interfaces (such as
List) for declaring fields, method parameters, or method return
values—in violation of the library designers’ recommendations.
This rule is expressed as a 45-lines JAVA class, and includes a hard-
coded (yet partial) list of the implementation classes. PMD does
make a heroic effort, but it will mistakenly report (e.g.) fields of
type Vector for some alien class Vector which is not a collec-
tion, and was declared outside of the java.util package. The
JTL equivalent is:

100

loose_coupling := (class|interface) {
T method | T field | method(*, T, *);

}, T implements /java.util.Collection;

It is shorter, more precise, and will detect improper uses of any
class that implements any standard collection interface, without
providing an explicit list.

5.6 Additional Applications

Several other potential uses for JTL include encapsulation policies
and confined types, among others. Encapsulation policies were
suggested by Scharli et al. [70] as a software construct for defining
which services are available to which program modules. Using
JTL, both the selection of services (methods) and the selection of
modules (classes) can be more easily expressed.

Confined types [14] are another example in which JTL could
be used, provided of course that confinement is represented in a
form of annotation. We have not yet investigated the question of
checking the imperative restrictions of confined types with JTL.

6. Performance
The JTL implementation is an ongoing project involving a team
of several programmers. The main challenge is in providing robust
and efficient execution environment that can be easily integrated
into JAVA tools.

The current implementation, which is publicly available at
http://www.cs.technion.ac.il/jtl, is an interpreter
supporting the language core, including top-down evaluation. It
does not yet include a complete implementation for some of the
more advanced features described earlier, and defers some of the
type checking to runtime.

Work is in progress for a JTL compiler which will translate a
JTL program into an equivalent DATALOG program. The DATALOG
code can then be processed by an industrial-strength DATALOG en-
gine. State of the art DATALOG research (see e.g., BDDBDDB [78]
achieves significant performance, which may benefit JTL as well.

The current implementation uses JAVA’s standard reflection
APIs for inspecting the structure of a class, and the Bytecode En-
gineering Library (BCEL) for checking the imperative instructions
found within methods. The code spans some 150 JAVA classes that
make up a JTL parser, an interpreter, and the implementation of the
native predicates that are the basis for JTL’s standard library.

On top of this infrastructure there is a text based interactive
environment that allows the user to query a given jar file, and an
Eclipse plugin that significantly enhances Eclipse’s standard search
capabilities. Naturally, other application can be easily developed by
using JTL’s programmatic interface (API).

We will now turn to the evaluation of the performance of this
implementation. Our test machine had a single 3GHz Pentium 4
processor with 3GB of RAM, running Windows XP. All JAVA
programs were compiled and run by Sun’s compiler and JVM,
version 1.5.0 06.

In the first set of measurements, we compared the time needed
for completing the evaluation of two distinct JTL queries, q1 and
q2, defined in Fig. 6.1. Each of the two queries was executed
over six increasingly larger inputs, formed by selecting at random
1,000, 4,000, 6,000, 8,000, 10,000 and 12,000 classes from the
JAVA standard library, version 1.5.0 06, by Sun Microsystems.

The running time of q1 and q2 on the various inputs are shown
on Fig. 6.2.

Examining the figure, we see that execution time, for the given
programs, is linear in the size of the input. The figure may also
suggest that runtime is linear in program size, but this conclusion
cannot be true in general, since there are programs of constant size
whose output is polynomially large in the input size.

Figure 6.1 JTL queries q1 and q2. C.q1 holds if C declares a public static
method whose return type is C; C.q2 holds if one of the super-classes of
C is abstract and, in addition, C declares a toString() method and an
equals() method.

q1 := eq[T] declares: { public static T (*) ; };

q2 := extends+ : { abstract ; }
declares : {

public String toString() ;
public boolean equals(Object) ;

} ;

Figure 6.2 Execution time of a JTL program vs. input size.

0

5

10

15

20

0 5,000 10,000

#Classes

T
im

e
(s

ec
)

q2
q1

The absolute times are also quite reasonable. For example, it
took just about 10 seconds to complete the evaluation of program
q1 on an input of 12,000 classes. Overall, the average execution
rate for program q1 was 1,250 classes per second.

In the second set of measurement we compared JTL’s Eclipse
plugin with that of JQuery. In a similar manner to JTL, JQuery
also tries to harness the power of declarative, logical programming
to the task of searching in programs, but (unlike JTL) JQuery
expressions are written in a PROLOG-like notation.

Another difference between these two systems relates to the
evaluation scheme: JQuery uses a bottom-up algorithm for the eval-
uation of predicates. As explained in Sec. 4, a bottom-up approach
is far from being optimal since it needlessly computes tuples and
relations even if they cannot be reached from the given input.

Specifically, JQuery initialization stage, where it extracts facts
the from all classes of the program took more than four minutes
on a moderate size project (775 classes), which is two orders of
a magnitude slower than JTL’s initialization phase. Also the first
invocation of an individual JQuery query is roughly ten times
slower than the corresponding time in JTL.

Therefore, in order to make the comparison fair to JQuery,
we broke a user’s interaction with the querying system into a
sequence of six distinct stages (defined in Fig. 6.3) and compared
the performance of JQuery vs. JTL on a stage-by-stage basis.

When running the JTL sessions we used the query q1 defined
earlier. In the JQuery sessions we used query q1’ (from Fig. 6.4)
which is the JQuery equivalent of q1.

We timed the JTL and the JQuery sessions on the Eclipse
projects representing the source of two open-source programs:
JFreeChart9 (775 classes) and Piccolo10 (504 classes). The sizes of
these projects, in number of classes, are 775 and 504 (respectively).

9 http://www.jfree.org/jfreechart
10 http://www.cs.umd.edu/hcil/jazz

101

Figure 6.3 The sequence of stages used for benchmarking.

• Init. One-time initialization

• Run1. First execution of the query

• Run2. Second execution of the query.

• Update. Updating of the internal data-structure following a
slight modification of the source files.

• Run3. Third execution of the query.

• Run4. Fourth execution of the query.

Figure 6.4 The JQuery equivalent of query q1. Holds for classes C that
declare a public static method whose return type is C.

q1’ �
method(?C,?M), returns(?M,?C),
modifier(?M,static),
modifier(?M,public)

The speedup ratio of JTL over JQuery is presented in Fig. 6.5.
The figure shows that JTL is faster in the Init, Run1 and Update

Figure 6.5 Speedup of JTL over JQuery, shown on a logarithmic scale. Each
pair of columns represents one of the stages defined in Fig. 6.3. Speedup
was calculated by dividing the time needed for a stage in the JQuery session
with the corresponding time measured from the JTL session.

0.7

1.1

0.7

1.0
1.3

0.9

7.5

118.0

27.1

7.6

113.2

24.0

0.1

1.0

10.0

100.0

1,000.0

Init Run1 Run2 Update Run3 Run4

JFreeChart

Piccolo

stages. JTL is about 100 times faster than JQuery at the Init stage,
and about 25 times faster at the Run1 stage. JTL was just slightly
faster in Run3, while JQuery was slightly faster in the Run2 and
Run4 stages.

As for space efficiency, we predict that a bottom-up evaluator
will be less efficient, compared to a top-down evaluator. In par-
ticular, we note that running JQuery searches on subject programs
larger than 3,000 classes exhausted the memory of the benchmark
machine. JTL, on the other hand, was able to process a 12,000-
classes project.

7. Discussion and Related Work
Tools and research artifacts which rely on the analysis of pro-
gram source code are abundant in the software world, including
metrics [20] tools, reverse-engineering [10], smart CASE enhance-
ments [47], configuration management [11], architecture discov-
ery [37], requirement tracing [38], AOP) [53], software porting and
migration [54], program annotation [3], and many more.

The very task of code analysis per se is often peripheral to such
products. It is therefore no wonder that many of these gravitate to-
ward the classical and well-established techniques of formal lan-
guage theory, parsing and compilation [2]. In particular, software is
recurringly represented in these tools in an AST.

JTL is different in that it relies of a flat relational model, which,
as demonstrated in Sec. 7.2, can also represent an AST. (Curiously,
there were recently two works [36, 56] in which relational queries
were used in OO software engineering; however, these pertained to
program execution trace, rather than to its static structure.)

JTL aspires to be a universal tool for tool writers, with applica-
tions such as specification of pointcuts in AOP, the expression of
type constraints for generic type parameters, mixin parameters, se-
lection of program elements for refactoring, patterns discovery, and
more.

The community has already identified the need for a general-
purpose tool or language for processing software. The literature
describes a number of such products, ranging from dedicated lan-
guages embedded into larger systems to attempts to harness exist-
ing languages (such as SQL or XQUERY [13]) to this purpose. Yet,
despite the vast amount of research invested in this area, no single
industry standard has emerged.

A well-known example is REFINE [67], part of the Software
Refinery Toolset by Reasoning Systems. With versions for C,
FORTRAN , COBOL and ADA [75], Software Refinery gener-
ated an AST from source code and stored them in a database for
later searches. The AST was then queried and transformed us-
ing the REFINE language, which included syntax-directed pattern
matching and compiled into COMMON LISP, with pre- and post-
conditions for code transformations. This meta-development tool
was used to generate development tools such as compilers, IDEs,
tools for detecting violations of coding standards, and more.

Earlier efforts include Gandalf [43], which generated a devel-
opment environment based on language specifications provided by
the developers. The generated systems were extended using the
ARL language, which was tree-oriented for easing AST manipula-
tions. Other systems that generated database information from pro-
grams and allowed user-developed tools to query this data included
the C Information Abstractor [19], where queries were expressed in
the INFOVIEW language, and its younger sibling C++ Information
Abstractor [40], which used the DATASHARE language.

A common theme of all of these, and numerous others (includ-
ing systems such as GENOA [26], TAWK [41], Ponder [9], AST-
Log [24], SCRUPLE [66] and more) is the AST-centered approach.
In fact, AST-based tools became so abundant in this field that a
recent such product was entitled YAAB, for “Yet Another AST
Browser” [7]. Another category of products is contains those which
rely on a relational model. For example, the Rigi [60] reverse en-
gineering tool, which translates a program into a stream of triplets,
where each triplet associates two program entities with some rela-
tion.

Sec. 7.1 compares JTL syntax with other similar products.
Sec. 7.2 then says a few words on the comparison of relational-
rather than an AST- model, for the task of queering OO languages.

7.1 Using Existing Query Languages

“Reading a poem in translation is like kissing
your lover through a handkerchief.”

H. N. BIALIK (1917)

Many tools use existing languages for making queries. YAAB,
for example, uses the Object Constraint Language, OCL, by Ra-
tional Software, to express queries on the AST; the Software
Life Cycle Support Environment (SLCSE) [72] is an environment-
generating tool where queries are written in SQL; Rigi’s triples
representation is intended to be further translated into a relational
format, which can be queried with languages such as SQL and
PROLOG; etc.

BDDBDDB [78] is similar to JTL in that it uses DATALOG for
analyzing software. It is different from JTL in that it concentrates
on the specific objective of code optimization, e.g., escape analysis,

102

and does not further abstract the underlying language. However, the
scope of the two for making optimization related analysis.

A more modern system is XIRC [27], where program meta-data
is stored in an XML format, and queries are expressed in XQUERY.
The JAVA standard reflection package (as well as other bytecode
analyzers, such as BCEL) generate JAVA data structures which can
be manipulated directly by the language. JQuery [50] underlying is
a PROLOG-based extension of Eclipse that allows the user to make
queries.

Finally, ALPHA [64] promotes the use of PROLOG queries for
expressing pointcuts in AOP. We next compare queries made with
some of these languages with the JTL equivalent.

Fig. 7.1(a) depicts an example (due to the designers of XIRC)
of using XQUERY to find Enterprise JavaBeans (EJB) which im-
plement finalize(), in violation of the EJB specification.

Figure 7.1 Eichberg et. al [27] example: search for EJBs that implement
finalize in XIRC (a) and JTL (b).

subtypes(/class[
@name="javax.ejb.EnterpriseBean"])

/method[
@name = "finalize"
and .//returns/@type = "void"
and not(.//parameter)

]

(a) XIRC implementation of the query (from [27]).

class implements /javax.ejb.EnterpriseBean {
public void finalize();

};

(b) The JTL equivalent of (a).

In inspecting the figure, we find that in order to use this language
the programmer must be intimately familiar not only with the
XQUERY language, but also with the details of the XIRC encoding,
e.g., the names of attributes where entity names, return type, and
parameters are stored. A tool developer may be expected to do
this, probably after climbing a steep learning curve, but its seems
infeasible to demand that an IDE user will interactively type a query
of this sort to search for similar bugs.

The JTL equivalent (Fig. 7.1(b)) is a bit shorter, and perhaps
less foreign to the JAVA programmer.

Fig. 7.1 demonstrates what we call the abstraction gap, which
occurs when the syntax of the queries is foreign to the queried
items.

We next compare JTL syntax with that of JQuery [50], which
also relies on Logic programming for making source code queries.
Tab. 2 compares the queries used in JQuery case study (extraction
of the user interface of a chess program) with their JTL counter-
parts. The table shows that JTL queries are a bit shorter and resem-
ble the code better.

The JTL pattern in the last row in is explained by the following:
To find a method in which one of the type of parameters contains a
certain word, we do a pattern match on its argument list, allowing
any number of arguments before and after the argument we seek.
The desired argument type itself is a regular expression.

The ASPECTJ sub-language for pointcut definition, just as the
sub-language used in JAM [5] for setting the requirements for
the base class of a mixin, exhibit minimal abstraction gap. The
challenge that JTL tries to meet is to do achieve this objective with
a more general language.

Fig. 7.2 is an example of using JAVA’s reflection APIs to im-
plement a query—here, finding all public final methods (in
a given class) that return an int.
When compared with Fig. 7.1, we can observe three things:

Figure 7.2 Eliciting public final int methods with the reflection library.

public Method[] pufim_reflection(Class c) {
Vector<Method> v = new Vector<Method>();
for (Method m : c.getMethods()) {
int mod = m.getModifiers();
if (m.getReturnType() == Integer.Type

&& Modifiers.isPublic(mod)
&& Modifiers.isFinal(mod))

v.add(m);
}
return v.toArray(new Method[0]);

}

• Fig. 7.2 uses JAVA’s familiar syntax, but this comes at the cost of
replacing the declarative syntax in Fig. 7.1 with explicit control
flow.

• Despite the use of plain JAVA, Fig. 7.2 manifests an abstraction
gap, by which the pattern of matching an entity is very different
from the entity itself.

• The code still assumes familiarity with an API; it is unreason-
able to expect an interactive user to type in such code.

Again, the JTL equivalent, public final int(*), is concise,
avoids complicated control flow, and minimizes the abstraction gap.

We should also note that the fragility of a query language is in
direct proportion to the extent by which it exposes the structure
of the underlying representation. Changes to the queried language
(i.e., JAVA in our examples), or deepening the information extracted
from it, might dictate a change to the representation, and conse-
quently to existing client code. By relying on many JAVA keywords
as part of its syntax, the fragility of JTL is minimal.

There are, however, certain limits to the similarity, the most striking one
being the fact that in JTL, an absence of a keyword means that its value is
unspecified, whereas in JAVA, the absence of e.g., static means that this
attribute is off. This is expressed as !static in JTL.

Another interesting comparison with JTL is given by consid-
ering ALPHA and Gybels and Brichau’s [42] “crosscut” language,
since both these languages rely on the logic paradigm. Both lan-
guages were designed solely for making pointcut definitions (Gy-
bels and Brichau’s work, just as ours, assumes a static model, while
ALPHA allows definitions based on execution history). It is no won-
der that both are more expressive in this than the reference AS-
PECTJ implementation.

Unfortunately, in doing so, both languages broaden rather than
narrow the abstraction gap of ASPECTJ. This is a result of the strict
adherence to the PROLOG syntax, which is very different than that
of JAVA. Second, both languages make heavy use of recursive calls,
potentially with “cuts”, to implement set operations. Third, both
languages are fragile in the sense described above

We argue that even though JTL is not specific to the AO do-
main, it can do a better job at specifying pointcuts. (Admittedly,
dynamic execution information is external to our scope.) Beyond
the issues just mentioned, by using the fixed point-model of com-
putation rather than backtracking, JTL solves some of the open is-
sues related to the integration of the logic paradigm with OO that
Gybels, Brichau, and Wuyts mention [16, Sec. 5.2]: The JTL API
supports multiple results and there is no backtracking to deal with.

7.2 AST vs. Relational Model

We believe that the terse expression and the small abstraction gap
offered by JTL is due to three factors: (i) the logic programming
paradigm, notorious for its brevity, (ii) the effort taken in making
the logic programming syntax even more readable in JTL, and
(iii) the selection of a relational rather than a tree data model.

103

Task JQuery JTL
Finding class “BoardManager” class(?C,name,BoardManager) class BoardManager

Finding all “main” methods method(?M,name,main)
method(?M,modifier,[public,static]) public static main(*)

Finding all methods taking a parameter whose
type contains the string “image”

method(?M,paramType,?PT)
method(?PT,/image/) method(*,/?*image?*/,*)

Table 2. Rewriting JQuery examples [50] in JTL

We now try to explain better the third factor. Examining the
list of tools enumerated early in this section we see that many of
these rely on the abstract syntax tree metaphor. The reason that
ASTs are so popular is that they follow the BNF form used to
define languages in which software is written. ASTs proved useful
for tasks such as compilation, translation and optimization; they
are also attractive for discovering the architecture of structured
programs, which are in essence ordered trees.

We next offer several points of comparison between an AST
based representation and the set-based, relational approach repre-
sented by JTL and other such tools. Note that as demonstrated in
Sec. 7.2, and as Crew’s ASTLog language [24] clearly shows, logic
programming does not stand in contradiction with a tree represen-
tation.)

1. Unordered Set Support. In traditional programming paradigms,
the central kind of modules were procedures, which are sequential
in nature. In contrast, in JAVA (and other OO languages) a recurring
metaphor is the unordered set, rather than the sequence: A program
has a set of packages, and there is no specific ordering in these.
Similarly, a package has a set of classes, a class is characterized by
a set of attributes and has a set of members, each member in turn
has a set of attributes, a method may throw a set of exceptions, etc.
Although sets can be supported by a tree structure, i.e., the set of
nodes of a certain kind, some programming work is required for set
manipulation which is a bit more natural and intrinsic to relational
structures.
On the other hand, the list of method arguments is sequential. Although
possible with a relational model, ordered lists are not as simple. This is why
JTL augments its relational model with built-ins for dealing with lists, as
can be seen in e.g., the last row of Tab. 2).

2. Recursive Structure. One of the primary advantages of an AST
is its support for the recursive structures so typical of struc-
tured programming, as manifested e.g., in Nassi-Shneiderman di-
agrams [62], or simple expression trees.

Similar recursion of program information is less common in mod-
ern languages. JAVA does support class nesting (which are repre-
sented using the inners predicate of JTL) and methods may (but
rarely do) include a definition of nested class. Also, a class cannot
contain packages, etc.

3. Representation Granularity. Even though recursively defined ex-
pressions and control statements still make the bodies of OO meth-
ods, they are abstracted away by our model.

JTL has native predicates for extracting the parameters of a method,
its local variables, and the external variables and methods which
it may access, and as shown, even support for dataflow analysis.
In contrast, ASTs make it easier to examine the control structure.
Also, with suitable AST representation, a LINT-like tool can pro-
vide warnings that JTL cannot, e.g., a non-traditional ordering of
method modifiers.

It should be said that the importance of analyzing method bodies in
OO software is not so great, particularly, since OO methods tend to
be small [20], and in contrast with the procedural approach, their
structure does not reveal much about software architecture [37].

Also, in the OO world, tools are not so concerned with the algo-
rithmic structure, and architecture is considered to be a graph rather
than a tree [47].

4. Theory of Searches. Relational algebra, SQL, and DATALOG are
only part of the host of familiar database searching theories. In
contrast, searches in an AST require the not-so-trivial VISITOR
design pattern, or frameworks of factories and delegation objects
(as in the Polyglot [63] project). This complexity is accentuated in
languages without multi-methods or open classes [18] but occur
even in more elaborate languages. Moreover, some questions of
attribute grammars (which are essentially what generates AST) are
very difficult, e.g., EXPTIME-complete [79].

5. Data Model Complexity. An AST is characterized by a variety
of kinds of nodes, corresponding to the variety of syntactical ele-
ments that a modern programming language offers. A considerable
mental effort must be dedicated for understanding the recursive re-
lationships between the different nodes, e.g., which nodes might
be found as children or descendants of a given node, what are the
possible parent types, etc.

The underlying complexity of the AST prevents a placement of a
straightforward interface at the disposal of the user, be it a pro-
grammatic interface (API), a text query interface or other. For ex-
ample, in the Hammurapi11 system, the rule “Avoid hiding inher-
ited instance fields” is implemented by more than 30 lines of JAVA
code, including two while loops and several if clauses. The cor-
responding JTL pattern is so short it can be written in one line:
class { field overrides[_] }

The terse expression is achieved by the uniformity of the relational
structure, and the fact that looping constructs are implicit in JTL
queries.
The JTL code in this example is explained as follows: The outer curly paren-
thesis implicitly loop over all class members, finding all fields among these.
The inner ones implicitly loop over all members that this field “overrides”.
A match (i.e., a rule violation) is found if the inner loop is not empty, i.e.,
there exists one element in the set for which the boolean condition true
holds.

6. Representation Flexibility. A statically typed approach (as in
Jamoos [34]) can support the reasoning required for tasks such as
iteration, lookup and modification of an AST. Such an approach
yields a large and complex collection of types of tree nodes. Con-
versely, in a weakly-typed approach (as in REFINE), the complexity
of these issues is manifested directly in the code.

Either way, changes in the requirements of the analysis, when
reflected in changes to the kind of information that an AST stores,
often require re-implementation of existing code, multiplying the
complex reasoning toll. This predicament is intrinsic to the AST
structure, since the search algorithm must be prepared to deal with
all possible kinds of tree nodes, with a potentially different behavior
in different such nodes. Therefore, the introduction of a new kind
of node has the potential of affecting all existing code.

11 http://www.hammurapi.org

104

In contrast, a relational model is typically widened by adding new
relations, without adding to the basic set of simple types. Such
changes are not likely to break, or even affect most existing queries.

7. Caching and Query Optimization. There is a huge body of solid
work on query optimization for relational structures; the research
on optimizing tree queries, e.g., XPATH queries, has only begun in
recent years. Also, in a tree structure, it is tempting to store sum-
marizing, cached information at internal nodes—a practice which
complicates the implementation. In comparison, the well estab-
lished notion of views in database theory saves the manual and con-
fusing work of caching.

8. Conclusions and Further Research
JTL is a novel, DATALOG-based query language designed for
querying JAVA programs in binary format. The JTL system can
be extended to query programs written in other programming-
languages (C#, SMALLTALK [35]), possibly in a different input
formats. Such extensions require mostly a rewrite the standard li-
brary of native predicates to be replaced with new native predicates
which are made to inspect the input at-hand.

We note that the detection of scratch values relies on JAVA’s
verification process which guarantees certain properties, of the
dataflow graph, in every legal method. Therefore, the use of
scratch-related predicates over a languages that has a weaker veri-
fication process, such as C#, is limited.

Even though termination is always guaranteed (on a finite
database) as long as negation is stratified, it is a basic property of
FOPL*that other questions are undecidable. For example, it fol-
lows from Gödel’s incompleteness theorem that it is impossible in
general to determine e.g., if two queries are equivalent, a query is
always empty, the results of one query is contained in another, etc.
These limitations are not a major hurdle for most JTL applications.
Moreover, there are textbook results [15] stating that such ques-
tions are decidable, with concrete algorithms, if the use of quan-
tifiers is restricted, as could be done for certain applications. Still,
we believe there is an interesting research challenge in stretching
the limitations on the use of negation. One reason for trying to do
so is that several classical dataflow analysis problems exhibit non-
stratified negation semantics, if expressed in JTL.

JTL sports, whenever possible, a top-down evaluation strategy.
Therefore, the amount of information “seen” by JTL’s runtime-
system during a predicate evaluation is related to the output size
and not by the size of the full database. Indeed, in many practical
situations, the size of the input is significantly smaller than the size
of the domain.

For example, when a programmer looks for a class in his source
directories, the input is the set of classes found in these directories,
where the database may consist of thousands or more classes,
including e.g., JAVA’s standard runtime library. Thanks to top-down
evaluation, the programmer is not penalized for the size of the
libraries his program uses.

Moreover, the JTL processor includes a query analyzer, (whose
description is beyond the scope of this paper) which determines if
a given query is “open” or “close”. Intuitively, a query is closed
if in computing it, JTL does not need to inspect classes beyond
what a JAVA compiler would do. In other words, in the course of
processing of a given query, JTL needs only inspect the classes ex-
plicitly mentioned in this query or passed to its as parameters, and
the classes that they (transitively) depend on these. For example,
the query bad_serialization, defined in Fig. 8.1, is close, since
it can be evaluated while inspecting its input, specifically, on the
hidden parameter and the literal /java.io.Serializable.

Figure 8.1 A close JTL query

bad_serialization :=
implements /java.io.Serializable {

no static final long
field ’SerialVersionUID;

}

The query classical_interface, defined in Fig. 8.2, check-
ing whether all implementations of the implicit parameter are
final, is open.

Figure 8.2 An open JTL query

implemented_by[X] := X implements #;

classical_interface :=
interface implemented_by: {

all final;
};

Processing open queries is time consuming. Worse, the output
of these queries is non-deterministic, in the sense that it depends on
the extent of the software repository available to the processor. This
is the reason that the JTL processor warns the programmer against
making open queries. As it turns out, JTL queries tend to be close.

We showed that JTL performance exceeds that of a comparable
tool. It would still be interested to stretch further JTL scalability and
evaluate its performance of close queries of very large programs,
typical to the open-source community, or open queries of large
libraries and commercial frameworks.

Another scalability concern is query complexity: The exam-
ples we provided preserver the spirit of QBE, and are similar to
JAVA code. Would this property maintain for increasingly com-
plex queries? We believe that the practice of using small auxiliary
queries, such as implemented_by of Fig. 8.2, should contribute
the cause of preserving the brevity and JAVA-like look of even more
complicated queries.

The work on JTL can be continued in the following directions:
First, there is the recalcitrant issue of extending JTL to support
modifications to the software base. The difficulty here lies with the
fact that such changes are expected to preserve the underlying lan-
guage semantics; in other words, there are complex invariants to
which the database under change must adhere. The current “bag-
gage” mechanism is limited precisely for that reason: we are still
seeking the balance between sufficient expressive power for string
processing and automatic checking that the produced code is cor-
rect. The problem becomes even more difficult in dealing with ex-
ecutional code.

Despite these issues, we argue that that JTL can be used, as
is, for specifying pre- and post-conditions for existing program
transformation systems.

Second, we would like to see a type-safe version of embedded
JTL, similar to the work on issuing type safe-embedded SQL calls
from JAVA [23, 57] and C# LINQ project12. The grand challenge
is in a seamless integration, a linguistic symbiosis [16] of JTL with
JAVA, perhaps in a manner similar to by which XML was integrated
into the language by Harden et al. [45].

Third, it would be interesting to see if the JTL could be en-
hanced to examine not only the dataflow of methods, but also their
control flow. Even more challenging is the combination of the two
perspectives.

Fourth, it might be useful to extend JTL to make queries on the
program trace, similarly to PQL [56] or PTQL [36]. This extension

12 http://msdn.microsoft.com/vcsharp/future/

105

could perhaps be used for pointcut definitions based on execution
stack.

Finally, there is an interesting challenge of finding a generic tool
for making language type extensions, for implementing e.g., non-
null types [28], read-only types [12], and alias annotations [4]. This
could be carried out in the manner described in [32], where the type
constraints are specified locally, with two closure conditions: first, a
recursively defined constraint on all invocable entities, and second,
a condition on allowed modification by inheritance.

The difficulty here lies in the fact that the dataflow analysis
we presented is a bit remote from the code. Perhaps the grand
challenge is the combination of the brevity of expression offered
by JTL with the pluggable type systems of Andreae, Markstrum,
Millstein and Noble [6].

Acknowledgements. Inspiring long discussions with Evelina
Zarivach greatly helped JTL take its shape. We are also indebted to
her for her meticulous read of early drafts of this paper. Comments
and encouragements of James Noble are happily acknowledged.
Part of the implementation was carried out by Grigory Fridberg.

References
[1] A. V. Aho, B. W. Kernighan, and P. J. Weinberger. The AWK

programming language. Addison-Wesley series in Computer Science.
Addison-Wesley Publishing Company, Reading, Massachusetts,
1988.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1986.

[3] J. E. Aldrich and C. Chambers. Ownership domains: Separating
aliasing policy from mechanisms. In M. Odersky, editor, Proc. of the
Eighteenth European Conference on Object-Oriented Programming
(ECOOP’04), volume 3086 of Lecture Notes in Computer Science,
pages 1–25, Oslo, Norway, June 2004. Springer Verlag.

[4] J. E. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations
for program understanding. In Proc. of the Seventeenth Annual
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’02), pages 311–330, Seattle, Washington,
Nov. 4–8 2002. OOPSLA’02, ACM SIGPLAN Notices 37(11).

[5] D. Ancona, G. Lagorio, and E. Zucca. Jam—designing a Java
extension with mixins. ACM Transactions on Programming
Languages and Systems, 25(5):641–712, 2003.

[6] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework
for implementing pluggable type systems. In Proceedings of the
21th Annual conference on Object-oriented programming, systems,
languages, and applications (OOPSLA’06), Portland, Oregon,
October 22–26 2006. ACM SIGPLAN Notices.

[7] G. Antoniol, M. D. Penta, and E. Merlo. YAAB (Yet Another AST
Browser): Using OCL to navigate ASTs. In Proc. of the Eleventh
International Workshop on Program Comprehension (IWPC’03),
pages 13–22, Portland, Oregon, USA, May 10-11 2003.

[8] K. Arnold and J. Gosling. The Java Programming Language.
The Java Series. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1996.

[9] D. C. Atkinson and W. G. Griswold. The design of whole-program
analysis tools. In Proc. of the Eighteenth International Conference
on Software Engineering (ICSE’96), pages 16–27, Berlin, Germany,
March 25-30 1996.

[10] L. A. Barowski and J. H. Cross II. Extraction and use of class
dependency information for Java. In Proc. of the Ninth Working
Conference on Reverse Engineering (WCRE’02), pages 309–318,
Richmond, Virginia, USA, Oct. 2002. IEEE Computer Society Press.

[11] L. Bendix, A. Dattolo, and F. Vitali. Software configuration
management in software and hypermedia engineering: A survey.
In Handbook of Software Engineering and Knowledge Engineering,
volume 1, pages 523–548. World Scientific Publishing, 2001.

[12] A. Birka and M. D. Ernst. A practical type system and language for
reference immutability. In J. M. Vlissides and D. C. Schmidt, editors,
Proc. of the Nineteenth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’04),
pages 35–49, Vancouver, BC, Canada, Oct. 2004. ACM SIGPLAN
Notices 39 (10).

[13] S. Boag, D. Chamberlin, M. F. Ferna’ndez, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML Query Language. W3C, 2005.

[14] B. Bokowski and J. Vitek. Confined types. In Proc. of the Fourteenth
Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’99), pages 82–96, Denver,
Colorado, Nov.1–5 1999. OOPSLA’99, ACM SIGPLAN Notices 34
(10).

[15] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision
Problem. Perspectives of Mathematical Logic. Springer Verlag,
1997.

[16] J. Brichau, K. Gybels, and R. Wuyts. Towards a linguistic symbiosis
of an object-oriented and a logic programming language. In
J. Striegnitz, K. Davis, and Y. Smaragdakis, editors, Proc. of the
Workshop on Multiparadigm Programming with Object-Oriented
Languages (MPOOL’02) at the European Conference on Object-
Oriented Programming, June 2002.

[17] S. Ceri, G. Gottlob, and L. Tanca. Logic programming and databases.
Springer Verlag, New York, 1990.

[18] C. Chambers. Object-oriented multi-methods in Cecil. In O. L.
Madsen, editor, Proc. of the Sixth European Conference on Object-
Oriented Programming (ECOOP92), volume 615 of Lecture Notes
in Computer Science, pages 33–56, Utrecht,the Netherlands, June29–
July3 1992. Springer Verlag.

[19] Y.-F. Chen, M. Nishimoto, and C. Ramamoorthy. The C information
abstraction system. IEEE Trans. Softw. Eng., 16(3):325–334, Mar.
1990.

[20] T. Cohen and J. Gil. Self-calibration of metrics of Java methods. In
Proc. of the Thirty Seventh International Conference on Technology
of Object-Oriented Languages and Systems (TOOLS’00 Pacific),
pages 94–106, Sydney, Australia, Nov. 20-23 2000. Prentice-Hall,
Englewood Cliffs, New Jersy 07632.

[21] T. Cohen and J. Gil. AspectJ2EE = AOP + J2EE: Towards an aspect
based, programmable and extensible middleware framework. In
M. Odersky, editor, Proc. of the Eighteenth European Conference
on Object-Oriented Programming (ECOOP’04), volume 3086 of
Lecture Notes in Computer Science, pages 219–243, Oslo, Norway,
June 2004. Springer Verlag.

[22] M. Consens, A. Mendelzon, and A. Ryman. Visualizing and querying
software structures. In CASCON’91, pages 17–35. IBM Press, 1991.

[23] W. R. Cook and S. Rai. Safe query objects: statically typed objects as
remotely executable queries. In B. N. Gruia-Catalin Roman, William
G. Griswold, editor, Proc. of the Twenty Seventh International
Conference on Software Engineering (ICSE’05), pages 97–106, St.
Louis, MO, USA, May 15-21 2005. ACM Press, New York, NY,
USA.

[24] R. F. Crew. ASTLOG: A language for examining abstract syntax
trees. In S. Kamin, editor, Proc. of the First USENIX Conference
Domain Specific Languages (DSL’97), pages 229–242, Santa Barbara,
Oct. 1997.

[25] P. Deransart, L. Cervoni, and A. Ed-Dbali. Prolog: The Standard:
reference manual. Springer-Verlag, London, UK, 1996.

[26] P. T. Devanbu. GENOA—a customizable, front-end-retargetable
source code analysis framework. ACM Trans. on Soft. Eng. and
Methodology, 8(2):177–212, 1999.

[27] M. Eichberg, M. Mezini, K. Ostermann, and T. Schäfer. XIRC:
A kernel for cross-artifact information engineering in software
development environments. In Proc. of the Eleventh Working
Conference on Reverse Engineering (WCRE’04), pages 182–191,
Delft, Netherlands, Nov. 8-12 2004. IEEE Computer Society Press.

106

[28] M. Fähndrich and K. R. M. Leino. Declaring and checking non-
null types in an object-oriented language. In R. Crocker and
G. L. S. Jr., editors, Proc. of the Eighteenth Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’03), pages 302–312, Anaheim, California, USA, Oct.
2003. ACM SIGPLAN Notices 38 (11).

[29] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In Proc. of the
Conference on Programming Language Design and Implementation
(PLDI) (PLDI’02), pages 234–245, Berlin, Germany, June 17-21
2002. Compaq Systems Research Center.

[30] M. Fowler. Refactoring: Improving the Design of Existing Code.
Object Technology Series. Addison-Wesley Publishing Company,
Reading, Massachusetts, 2000.

[31] R. Garcia, J. Järvi, A. Lumsdaine, J. Siek, and J. Willcock. A com-
parative study of language support for generic programming. In
R. Crocker and G. L. S. Jr., editors, Proc. of the Eighteenth Annual
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’03), pages 115–134, Anaheim, Califor-
nia, USA, Oct. 2003. ACM SIGPLAN Notices 38 (11).

[32] J. Gil and Y. Eckel. Statically checkable design level traits. In Proc. of
the Thirteenth IEEE Conference on Automated Software Engineering
(ASE’98), page 217, Honolulu, Hawaii, USA, Nov. 1998. IEEE
Computer.

[33] J. Gil and I. Maman. Micro patterns in Java code. In Proc. of
the Twentieth Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’05), San Diego,
California, Oct.16-20 2005. ACM SIGPLAN Notices.

[34] J. Gil and Y. Tsoglin. JAMOOS—a domain-specific language for
language processing. J. Comp. and Inf. Tech., 9(4):305–321, 2001.

[35] A. Goldberg. Smalltalk-80: The Interactive Programming Envi-
ronment. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1984.

[36] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries
over program traces. In Proc. of the Twentieth Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’05), pages 385–402, San Diego, California, Oct.16-20
2005. ACM SIGPLAN Notices.

[37] I. Gorton and L. Zhu. Tool support for Just-in-Time architecture
reconstruction and evaluation: An experience report. In B. N.
Gruia-Catalin Roman, William G. Griswold, editor, Proc. of the
Twenty Seventh International Conference on Software Engineering
(ICSE’05), pages 514–523, St. Louis, MO, USA, May 15-21 2005.
ACM Press, New York, NY, USA.

[38] O. C. Z. Gotel and A. C. W. Finkelstein. An analysis of the
requirements traceability problem. In Proc. of the First International
Conference on Requirements Engineering (ICRE’94), pages 94–101,
Colorado Springs, Colorado, Apr. 1994. IEEE Computer Society
Press.

[39] G. Gottlob, E. Grädel, and H. Veith. Linear time Datalog for
branching time logic. In Logic-Based Artificial Intelligence. Kluwer,
2000.

[40] J. E. Grass and Y. Chen. The C++ information abstractor. In Proc.
of the USENIX C++ Conference, pages 265–277, San Fransisco, CA,
Apr. 1990. AT&T Bell Laboratories, USENIX Association.

[41] W. G. Griswold, D. C. Atkinson, and C. McCurdy. Fast, flexible
syntactic pattern matching and processing. In Proc. of the Fourth
Workshop on Program Comprehension (WPC ’96), pages 144–153,
Washington, DC, 1996. IEEE Computer Society Press.

[42] K. Gybels and J. Brichau. Arranging language features for more
robust pattern-based crosscuts. In Proc. of the Second International
Conference on Aspect-Oriented Software Development (AOSD’03),
pages 60–69, Boston, Massachusetts, USA, Mar. 17-21 2003. ACM
Press, New York, NY, USA.

[43] A. N. Habermann and D. Notkin. Gandalf: Software development
environments. IEEE Trans. Softw. Eng., 12(12):1117–1127, Dec.
1986.

[44] E. Hajiyev, M. Verbaere, and O. de Moor. Codequest: Scalable source
code queries with datalog. In D. Thomas, editor, Proceedings of
the 20th European Conference on Object-Oriented Programming
(ECOOP’06), volume 4067 of Lecture Notes in Computer Science,
pages 2–27, Berlin, Germany, 2006. Springer.

[45] M. Harren et al. XJ: integration of XML processing into Java. In
WWW Alt. ’04: Proc. of the Thirteenth International World Wide Web
Conference on Alternate track papers & posters, pages 340–341,
New York, NY, USA, 2004. ACM Press, New York, NY, USA.

[46] A. Hejlsberg, S. Wiltamuth, and P. Golde. The C# Programming
Language. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, second edition, Oct. 2003.

[47] R. Holmes and G. C. Murphy. Using structural context to recommend
source code examples. In B. N. Gruia-Catalin Roman, William
G. Griswold, editor, Proc. of the Twenty Seventh International
Conference on Software Engineering (ICSE’05), pages 117–125,
St. Louis, MO, USA, May 15-21 2005. ACM Press, New York, NY,
USA.

[48] D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM SIGPLAN
Notices, 39(12):92–106, 2004.

[49] ISE. ISE EIFFEL The Language Reference. ISE, Santa Barbara, CA,
1997.

[50] D. Janzen and K. D. Volder. Navigating and querying code without
getting lost. In Proc. of the Second international conference on
Aspect-Oriented Software Development (AOSD’03), pages 178–187,
New York, NY, USA, 2003. ACM Press.

[51] J. Järvi, J. Willcock, and A. Lumsdaine. Associated types and
constraint propagation for mainstream object-oriented generics.
In Proc. of the Twentieth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’05),
San Diego, California, Oct.16-20 2005. ACM SIGPLAN Notices.

[52] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. In J. L. Knudsen, editor, Proc. of
the Fifteenth European Conference on Object-Oriented Programming
(ECOOP’01), volume 2072 of Lecture Notes in Computer Science,
pages 327–355, Budapest, Hungary, June 2001. Springer Verlag.

[53] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. V. Lopes, J.-
M. Loingtier, and J. Irwin. Aspect-oriented programming. In M. Akşit
and S. Matsuoka, editors, Proc. of the Eleventh European Conference
on Object-Oriented Programming (ECOOP’97), volume 1241 of
Lecture Notes in Computer Science, pages 220–242, Jyväskylä,
Finland, June 9-13 1997. Springer Verlag.

[54] K. Kontogiannis, J. Martin, K. Wong, R. Gregory, H. A. Müller,
and J. Mylopoulos. Code migration through transformations. In
S. A. MacKay and J. H. Johnson, editors, Proc. of the Conference
of the Centre for Advanced Studies on Collaborative research
(CASCON’98), page 13, Toronto, Ontario, Canada, Nov. 1998. IBM
Press.

[55] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley Publishing Company, Reading, Massachusetts,
second edition, 1999.

[56] M. Martin, B. Livshits, and M. S. Lam. Finding application errors
and security flaws using PQL: a program query language. In Proc. of
the Twentieth Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’05), pages 365–
383, San Diego, California, Oct.16-20 2005. ACM SIGPLAN
Notices.

[57] R. A. McClure and I. H. Krüger. SQL DOM: compile time checking
of dynamic SQL statements. In B. N. Gruia-Catalin Roman, William
G. Griswold, editor, Proc. of the Twenty Seventh International
Conference on Software Engineering (ICSE’05), pages 88–96, St.
Louis, MO, USA, May 15-21 2005. ACM Press, New York, NY,
USA.

107

[58] B. Meyer. Object-Oriented Software Construction. Prentice-Hall,
Englewood Cliffs, New Jersy 07632, Englewood Cliffs, New Jersy,
second edition, 1997.

[59] M. Mezini and K. Ostermann. Conquering aspects with Caesar. In
Proc. of the Second International Conference on Aspect-Oriented
Software Development (AOSD’03), pages 90–100, Boston, Mas-
sachusetts, USA, Mar. 17-21 2003. ACM Press, New York, NY,
USA.

[60] H. A. Müller and K. Klashinsky. Rigi—A system for programming-
in-the-large. In Proc. of the Tenth International Conference on
Software Engineering (ICSE’88), pages 80–86, Singapore, Apr. 1988.
IEEE Computer Society Press.

[61] G. C. Murphy, M. Kersten, M. P. Robillard, and D. Cubranic. The
emergent structure of development tasks. In A. P. Black, editor,
Proc. of the Ninetieth European Conference on Object-Oriented
Programming (ECOOP’05), volume 3086 of Lecture Notes in
Computer Science, pages 33–48, Glasgow, UK, July 25–29 2005.
Springer Verlag.

[62] I. Nassi and B. Shneiderman. Flowchart techniques for structured
programming. ACM SIGPLAN Notices, 8(8):12–26, Aug. 1973.

[63] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An
extensible compiler framework for Java. In Proc. of the Twelfth
International Conference on Compiler Construction (CC’03), pages
138–152, Warsaw, Poland, Apr. 2003. Springer Verlag.

[64] K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts
for increased modularity. In A. P. Black, editor, Proc. of the
Ninetieth European Conference on Object-Oriented Programming
(ECOOP’05), volume 3086 of Lecture Notes in Computer Science,
pages 214–240, Glasgow, UK, July 25–29 2005. Springer Verlag.

[65] J. K. Ousterhout. Tcl: An embeddable command language. In Proc.
of the Winter 1990 USENIX Conference, pages 133–146, Wasington,
D.C., Jan. 1990.

[66] S. Paul and A. Prakash. Querying source code using an algebraic
query language. In H. A. Müller and M. Georges, editors, Proc. of
the Tenth IEEE International Conference on Software Maintenance
(ICSM’94), pages 127–136, Victoria, BC, Canada, Sept. 1994. IEEE
Computer.

[67] Reasoning Systems. REFINE User’s Manual, 1988.

[68] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of bug
finding tools for Java. In Proc. of the Fifteenth International
Symposium on Software Reliability Engineering (ISSRE 2004),
pages 245–256, Saint-Malo, Bretagne, France, Nov. 2–5 2004. IEEE
Computer Society Press.

[69] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits:
Composable units of behavior. In L. Cardelli, editor, Proc. of the
Seventeenth European Conference on Object-Oriented Programming
(ECOOP’03), volume 2743 of Lecture Notes in Computer Science,
pages 248–274, Darmstadt, Germany, July 21–25 2003. Springer
Verlag.

[70] N. Schärli, S. Ducasse, O. Nierstrasz, and R. Wuyts. Compos-
able encapsulation policies. In M. Odersky, editor, Proc. of the
Eighteenth European Conference on Object-Oriented Programming
(ECOOP’04), volume 3086 of Lecture Notes in Computer Science,
pages 26–50, Oslo, Norway, June 2004. Springer Verlag.

[71] C. Smith and S. Drossopoulou. Chai: Traits for Java-like languages.
In A. P. Black, editor, Proc. of the Ninetieth European Conference
on Object-Oriented Programming (ECOOP’05), volume 3086 of
Lecture Notes in Computer Science, Glasgow, Scotland, July 25–29
2005. Springer Verlag.

[72] T. Strelich. The Software Life Cycle Support Environment (SLCSE):
a computer based framework for developing soft. sys. In Proc. of the
Third ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments (SDE’88), pages
35–44, Boston, Massachusetts, 1988. ACM Press, New York, NY,
USA.

[73] B. Stroustrup. The C++ Programming Language. Addison-Wesley
Publishing Company, Reading, Massachusetts, third edition, 1997.

[74] B. Stroustrup and G. D. Reis. Concepts—design choices for template
argument checking. ISO/IEC JTC1/SC22/WG21 no. 1536, 2003.

[75] S. T. Taft and R. A. Duff, editors. Ada 95 Reference Manual,
Language and Standard Libraries, International Standard ISO/IEC
8652: 1995(E), volume 1246 of LNCS. Springer Verlag, 1997.

[76] M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian. Openjava:
A class-based macro system for java. In W. Cazzola, R. J. Stroud,
and F. Tisato, editors, Proc. of the First OOPSLA Workshop on
Reflection and Software Engineering, volume 1826 of Lecture Notes
in Computer Science, pages 117–133, Denver, CO, USA, Nov. 1999.
OOPSLA’99, Springer Verlag.

[77] A. van Gelder, K. Ross, and J. S. Schlipf. The well-founded semantics
for general logic programs. Journal of the ACM, 38(3):620–650,
1991.

[78] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analyses using binary decision diagrams. In Proc. of the
Conference on Programming Language Design and Implementation
(PLDI) (PLDI’04), pages 131–144, Washington, DC, June 9-11 2004.
ACM Press, New York, NY, USA.

[79] P.-C. Wu. On exponential-time completeness of the circularity
problem for attribute grammars. ACM Transactions on Programming
Languages and Systems, 26(1):186–190, 2004.

[80] M. M. Zloof. Query By Example. In Proceedings of the National
Computer Conference, pages 431–438, Anaheim, CA, May 1975.

108

