
JTL and the Annoying Subtleties of Preciseµ-Pattern Definitions

Tal Cohen Joseph (Yossi) Gil Itay Maman
Department of Computer Science

Technion—Israel Institute of Technology
Technion City, Haifa 32000, Israel

ctal | yogi | imaman @ cs.technion.ac.il

Abstract
We describe the lessons learned from our experience in translating
the natural language definitions, and the actual Java implementa-
tion, of micro-patternsinto the declarative, formal, and ready for
execution, yet human-readable equivalent inJTL (the Java Tools
Language).

1. Introduction
When theory, any theory, is brought to practice, many mundane
details pop out: in economics, markets are not always perfect; dif-
ferent courts interpret the same law in different ways; and, honey-
moons often dure less than a month. In the art of computer pro-
gramming however, this phenomenon is perhaps the worst. Take
notions as famous and (supposedly) well-understood such as “co-
hesion”, “modularity”, or “portability”—the software world would
have been so much better if these were not so open to conflicting
interpretations by different individuals, even within the same ware-
house.

A telling example is the application of theoretic software metrics,
e.g., the renown metric oflack of cohesion in methods(LCOM) in
a class, due to Chidamber and Kemerer [5]. LCOM is defined as
a rather simple mathematical function operating on the bi-partite
graph, in which there is an edge between a method and a field
iff that method uses that field. An attempt to compute this met-
ric on actual code will yield different results, since it forces a pre-
cise definition of terms such as “method” (does this coverstatic

methods, inherited methods, overridden methods,private meth-
ods, constructors, etc.?), “field” (what about inherited fields, arrays,
nested fields, read-only fields or constants?), “use” (is indirect use
included? how is aliasing treated? are messages sent to a field con-
sidered use?, etc.). Consequently, it is highly unlikely that different
individuals will compute even close LCOM values for the same
input, or that the same class design, implemented in different pro-
gramming languages, will have the same LCOM value.

The situation is worse with the less precise theory of software ar-
chitecture, design and, what’s most dear to us, patterns. The broad
term “patterns” includes in it the famousdesign patterns[9], archi-
tectural patterns [3], enterprise applications patterns [11], coding
idioms [7] and implementation patterns [2]. These pattern kinds
can be placed on an abstraction ladder, in which the lowest steps
correspond to patterns closest to the code level. The code that cor-
responds to a pattern, what we may call itsfootprint, can usually be
predicted for low-level patterns, but not for high-level patterns. For
instance, the double-dispatch [7] idiom almost invariably leaves a
footprint in which we see a method with a single argument, whose
body invokes a method on that single argument, where thethis

variable is passed to the invoked method.

On the other hand, the footprint of (say) theMVC (Model-View-
Controller) [3] architectural pattern is much more flexible and has
numerous realizations.

In an earlier work, two of us [10] tried to reverse the process, in-
stead of first defining the patterns, and then searching for their foot-
print; we proposed a set of patterns which are defined based also
on the ability to recognize these in the code. To this end, we coined
termmicro-patterns(or µ-patterns for short) to denote patterns of
class design, which are unique in beingmechanically recognizable
or traceable, i.e., unlike the classical design patterns, these are be-
ing defined directly in terms of the underlying programming lan-
guage. In that work, we said that a pattern istraceableif it can
be expressed as a “simple formal condition on the attributes, type,
name and body of a software module and its components”. For ex-
ample, theSAMPLER µ-pattern is the condition on a class requiring
that this class

“ . . . has a public constructor, and one or morestatic
public fields of the same type as the class itself . . . ”[10]

This property of micro-patterns makes it possible to translate their
definitions into an automatic device (i.e., a computer program)
which will identify these patterns in actual code.

Yet, as it turns out, there are still annoying details that emerge
even in trying to bring the theoretical definition of these patterns
into practice, i.e., an actual implementation of a pattern recognizer.
First, definitions, such as the one quoted above are made in nat-
ural language. There is a challenge in putting these definitions in
a formal, precise, yet understandable language. Second, as in the
LCOM example above, there are many subtleties in the interpreta-
tion of the basic terms which such a definition uses, regardless of
whether this is definition is made in natural or formal language.

We argue that these two issues are fundamental to all patterns,
regardless of their place in the abstraction level: (i) not much faith
can be put in precise definitions which are not readable, and hence
readily checked by humans, and, (ii) there must be no ambiguity in
the meaning of basic, atomic terms which are used in higher-level
definitions.

Our initial implementation of a program to identifyµ-patterns
was carried out inJAVA [1]. We are now in the process of migrat-
ing this implementation to a new language, JTL (acronym for the
JAVA Tools Language, pronounced “Gee-Tel”), designed specifi-
cally for the purpose of formulating queries overJAVA code. JTL is
described in detail in a concurrently published paper [6]. For now
it suffices to say that JTL relies on the well understood and expres-
sive semantics of the logic-programming paradigm, as well as on
its laconic mode of speaking. Further, JTL’s unique syntax gives it
a query by exampleflavor. In many cases, the pattern for matching
JAVA code looks just like this code itself.

The purpose of this paper is to describe the lessons learned
from our experience in translating the natural language definitions

1 2006/10/4

(backed by the actualJAVA implementation of the pattern analyzer)
into declarative, formal, yet very readable JTL equivalent.

Outline. We start with a brief tutorial of JTL (Sec. 2). Sec. 3
presents an overview of micro patterns, followed by Sec. 4 which
provides a precise definition, expressed as a JTL query, for each
of the micro patterns. In Sec. 5 we compare some of the JTL def-
initions with the ones used in our previous work, highlighting the
ambiguities that are inherent in natural language. Finally, conclu-
sions and our summary are presented in Sec. 6.

2. JTL - The Java Tools Language
JTL is a DATALOG [4]-like query language, whose basic con-
structs arepredicates, also calledpatterns. Many JAVA keywords
are primitive predicates; each such keyword matchesJAVA lan-
guage elements declared by it, e.g., the JTL predicatepublic

matches public classes, interfaces and class members, whereas
predicateinterface matches interfaces. Some JTL primitives, such
asmethod , are notJAVA keywords.

A space denotes conjunction; therefore,public method matches
only public methods. Disjunction is denoted by a vertical bar,
negation by an exclamation mark, operator precedence is the usual,
while square brackets may be used to override precedence. For
example, the expression

[public | protected] ! static int

matches non-static class members (both fields and methods) of
type int that are eitherpublic or protected . Predicate definitions
are used to name expressions. For example,

instance := ! static ;
service := public instance method;

names theservice predicate, which can now be used just like a
primitive predicate in composing expressions. Predicateservice is
in fact part of JTL’s rich standard library.

The predicates presented so far areunary, acting on a single value
and returning true if the passed-in value is matched. Semantically,
this value is represented by a specialsubjectvariable, denoted#,
that is implicitly passed to invoked predicates. Thusservice can
be expressed in two different, more explicit ways:

service := #. public !#. static #.method; −−or:
#.service := #. public !#. static #.method;

JTL also supports binary (and higher-arity) predicates, which
accept an explicitargumentin addition to the implicit subject.

For example, the binary primitive predicatedeclares[M] holds
if # is a class or interface which declares the memberM. The
JAVA keyword implements has a corresponding JTL predicate,
implements [I] , that holds if# is a class that implements inter-
faceI . Similarly, extends [S] holds if S is a superclass of#.

As in DATALOG, variables, including arguments, always begin
with an upper-case letter, whereas predicate names must begin in
lower-case. The underscore symbol (“_”) represents an unnamed
variable, which is useful if we do not care about a certain position
in the relation “returned” from a predicate.

Developers can define their own binary predicates; e.g., given
interfaceof[C] := C. class C. implements [#]; (1)

the expressionI.interfaceof[T] holds if T is a class that imple-
ments interfaceI . Example (1) can be re-written in a more elegant
manner with thesubject-chainingoperator,&:

interfaceof[C] := C. class & implements [#];

Also, JTL can recognize the parameters passed to a predicate based
on the predicate’s arity. Thus, the square brackets surrounding
parameters, as well as the dot symbol (separating an explicit subject
from a predicate) can usually be omitted:

interfaceof C := C class & implements #;

JTL employs variable binding, similar to that ofDATALOG. The
commonpredicate in the following example holds if# andT have a

common super-interface:
common T := implements X, T implements X; (2)

One can also use the== operator, or its aliasis , to explicitly
equalize two variables. This allows (2) to be written as:

common T := implements X, T implements Y, X is Y;

Quantification. Logic programming often uses recursion to re-
alize existential quantifiers. JTL has a unique mechanism for car-
rying out such computations. For example, the following predicate
matches classes which implement a non-public interface:
has_nonpublic_interface := implements : {

exists ! public ;
};

The computation here involves two stages: (a) generating a set,
and (b) applying a quantified condition to the entire set. The “: ”
character that follows the binary predicateimplements turns this
predicate into agenerator, which returns the set of allX’s such
that the expression#.implmenets[X] holds. Quantifier applica-
tion is then carried out inside the curly brackets. Specifically,
exists ! public is a set conditionwhich checks that the set of
interfaces contains at least one member for which! public holds.

The curly brackets can be thought of as a loop iterating over the
elements of the generated set. The current element of the iteration
serves as the subject of the quantified condition. The internal curly
brackets scope hides the subject variable of the external scope;
therefore, the condition! public from the previous example will
be evaluated against each of the values in the generated set.

JTL’s has five basic quantifiers:has (also aliased asexists), the
existential quantifier;all , the universal quantifier;no (alias:empty),
negated existential quantifier;one , exactly one match;many, more
than one match. A missing quantifier defaults tohas . In addition,
JTL offers set operators which compare two (or more) sets, e.g.,
good_encapsulation := class members: {

field => private ;
};

holds if every field has private visibility (a containment between
the corresponding sets).

If a curly brackets scope has no preceding generator, then an
(implicit) members: generator predicate is inferred. This generator
produces all the fields, methods, constructors as well as the static
initializer that are declared within the body of a class, regardless of
their visibility level. This includes members which either override
or hide inherited members (but excludes all inherited members).

Other standard predicates which are useful as generators include
protocol —all non-private members of a class, including inher-
ited ones, that were not overridden (or hidden) due to inheritance;
holds —all members (includingprivate -, inherited-, overridden-
and hidden- members) that a class has;offers —similar to holds ,
but excludes the members that were declared injava.lang.Object .

Signature predicates. Signature predicates pertain to the signa-
ture of program elements, including the name, type, argument list,
declared thrown exceptions and annotations (meta-data).

An argument list predicateis used for matching against elements
of the list of arguments to a method. (Internally, such lists are stored
using standardPROLOG [8]-like head andtail relations.) The most
simple argument list is the empty list, which matches methods and
constructors that accept no arguments. For example,

defaultCtor := constructor ();

matches only no-arguments constructors.
An asterisk (“* ”) in an arguments list predicate matches a se-

quence of zero or more types. Thus, the standard-library predicate
invocable := (*);

matches members which may take any number of arguments, i.e.,
constructors and methods, but not fields.

2 2006/10/4

By using variable binding we write a predicate which requires
that the two arguments of a protected method are of the same type:

firstEq2nd := protected (X,X);

A name predicateis a name (or a regular expression) enclosed
in single quotes. The closing quote can be omitted if there is no
ambiguity. For example, the library predicate

pure_static := static ![’serialVersionUID field];

matches static members, except theserialVersionUID field1.
A type predicatespecifies theJAVA type of a non-primitive class

member. A type predicate is a regular expression preceded by a
forward slash; e.g., predicate/java.util.?*/ method matches all
methods with a return type from thejava.util package (or its sub-
packages). The closing slash is optional.

Hence, the expressionpublic _ (_, /String, *) matches any
public method that accepts aString as its second argument, and
returns any type (but not constructors, which return no type).

Finally, Type predicates can also be used as actual parameters to
binary (or higher-arity) predicates:

interface extends /java.io.Serializable

matches any interface that extends the standardSerializable in-
terface.

Further definitions of predicates, as well as some language con-
structs, will be presented, as needed, in Sec. 4.

3. Micro Patterns
In a previous work [10] we defined 27 micro patters and studied
their abundance inJAVA programs. In that work, the patterns were
defined in a natural language (English) where each definition at-
tempted to capture the lookup algorithm (of each pattern) in a few
short sentences.

An overview of our catalog of micro patterns is depicted by the
map in Fig. 3.1. The map presents the 8 categories of micro patterns
and the placement of the 27 micro patterns into these.

����������	����
�

�����������
�
��

���
������

����

�������������

������

�
������
����
�����

�����
�

�
����

����������
�

����
�������

	��
� !�

"���
��
�� !�

	�
���������

�����������	�����
��
�����
���

�����
������� �����������

	����

��������

�����
��������

���������
�
��������

�����������
����
���

����
�
��

�����������

#�����
�

�����!

 ����

����

�����������	��
� ����������
���������

�
�
���������	��

�
�
����

��
��

�

	

�

�

�
��������

 ������!

$���
�

	���

����������

#���
�
����

�%
�����
��

&��
��
�

Rounded rectangles denote pattern categories in which state,
behavior, or construction is degenerate, rectangles denote cate-
gories of patterns for containment, while trapezoids denote pat-
terns used for inheritance.

Figure 3.1. A map of the micro patterns catalog

TheX-dimension of Fig. 3.1 corresponds to class behavior. Cat-
egories at the left hand side of the map are those of patterns which

1 This special field is used by theJAVA serialization mechanism.

restrict the class behavior more than patterns which belong to cate-
gories at the right.

Similarly, the Y -dimension of the figure corresponds to class
state: Categories at the upper portion of the map are of patterns
restricting the class state more than patterns which belong to cate-
gories at the bottom of the map.

Examining the figure we see that the smallest category, with
respect to the number of patterns, is theControlled Creationwhich
contains two patterns. The largest category is theDegenerate State
and Behaviorwhich has eight patterns.

The map highlights the fact that the categories are not mutually
exclusive: Some patterns (E.g,Trait) belong to more than one cate-
gory (Base ClassesandDegenerate State.

Another issue, which is not evident from the map, is that of
overlapping between patterns. A class may belong to two or more
patterns at the same time. Classjava.beans.BeanDescriptor

2, for
example, is both anExtender and aSink. In the data set that we
used in [10] we found classes that were matched by as many as
six(!) patterns.

4. Precise Description of Micro Patterns
We can now turn to a detailed description of each pattern, using
JTL queries. This section is largely organized according to the
categories of patterns which were presented in Fig. 3.1.

In order to eliminate overlapping between categories we decided
that patterns that belong both toBase Classesand to any other cat-
egory will be presented insideBase Classes. We also merged the
Degenerate StateandWrapperscategories, as well as theDegener-
ate BehaviorandData Managerscategories. The resulting catego-
rization has no overlaps.

For each category we give a short summary and then the JTL
queries defining the patterns belonging to the category. We start
with the inheritance-related categories, then move to theControlled
Creationcategory, followed by the degenerated classes categories

Inheritors. The conditions embodied by the patterns in this cat-
egory examine the relationship between a class and its superclass.

An Implementor class implements abstract methods, anOverrider
class overrides existing methods andExtender enriches the inher-
ited interface. Note that the definitions of these patterns are mutu-
ally exclusive.

implementor := ! abstract class {
service => overriding M, M abstract ;
exists service;

};

overrider:= ! abstract class {
service => overriding M, M concrete;
exists service;

};

extender := type {
introduced[T] := T introduces #;
service => !introduced _;
exists service;

};

Figure 4.1. Inheritors

The definition ofintroduced in the Extender pattern defines an
auxiliary predicate which is visible only inside the scope of the
curly brackets. Specificallyintroduced T holds if # was declared
in T, without either hiding or overriding an inherited member.

Base Classes. This category includes six micro patterns captur-
ing different ways in which a base class can make preparations for
its subclasses.

2 taken fromJAVA ’s standard library

3 2006/10/4

trait := abstract offers: {
abstract method;
! abstract method;
no instance field;

};

state_machine := interface offers: {
service => ();
has service;

};

augmented_type := abstract {
constant := visible pure_static final field;
constant => type_is T;
many constant;

instance method;
no instance field;
no private field;
no ! final real_static field;

}
offers: {

no ! abstract instance method;
};

pure_type := abstract offers: {
abstract method;
no ! abstract method;
no field;

};

pseudo_class := abstract class offers: {
no instance field;
no ! abstract method;

};

outline := abstract class is T {
candidate := ! abstract instance method

| static method ! ’main;
dispatch[M,M’] := holds M, protocol M’,

[M’ overrides M | M’ hides M];
candidate invokes_virtual M,

T.dispatch[M,M’], M’ abstract ;
};

Figure 4.2. Base Classes

The type_is predicate inAugmented Type associates a member#

with its type (a field’s type or a method’s return type). Thus, the
primary requirement of theAugmented Type pattern is that a class
will have two or more static final fields, which are all of the same
type.

A Pseudo Class is a class which could be rewritten as an interface
(ignoring static methods). APure Type is either an interface or a
class which define only a set of operations. This implies that a class
offers neither concrete methods nor static methods, nor fields, and
that an interface offers no static fields.

TheOutline patterns tries to capture the famoustemplate method
design pattern, whose intent is:

“Define the skeleton of an algorithm in an operation, de-
ferring some steps to client subclasses. Template Method
lets subclasses redefine certain steps of an algorithm with-
out changing the algorithm’s structure”[9]

This was realized in JTL using two auxiliary predicates,candidate

anddispatch .
Controlled Creation. The two patterns in this category match

classes in which there is a special protocol for creating objects.
The first pattern prevents clients from creating instances directly.

The second pattern provides clients with ready made instances.
Degenerate State and Behavior. This category includes those in-

terfaces and classes in which both state and behavior are extremely

restricted_creation := # is T {
no public constructor;
static field type_is X,

[T extends X | T implements X | T is X];
};

sampler := # is T {
public constructor;
static field type_is X,

[T extends X | T implements X | T is X];
};

Figure 4.3. Controlled Creation

degenerate. This degeneracy means, in most cases, that the class (or
interface) does not define any variables or methods.

designator := abstract type {
no method | field;

};

taxonomy := type {
no method;
no field;

}
[interface , interfaces: { one }

| class , interfaces: { empty }]

joiner := type {
no field;
no method;

}
[interface , interfaces: { many }

| class , implements _];

pool := type {
no instance [field | method];
no visible ! final field;
exist visible real_static field;

};

Figure 4.4. Degenerate State and Behavior

Despite the severe restrictions imposed by these definitions,
classes and interfaces which fall into this group are useful in tasks
such as making and managing global definitions, class tagging, and
more generally for defining and managing a taxonomy.

Degenerate State, Wrappers. The Degenerate Statecategory
pertains to classes whose instances have no state at all, or that their
state is shared by several objects, or that they are immutable.

Wrappersare classes which wrap a central instance field with
their methods. They tend to delegate functionality to this field. The
main pattern inWrappersis Box. The case that the wrapper protects
the field from changes is covered byCanopy. In a Compound Box
most of the state is maintained by a single non primitive field, where
additional primitive fields holds auxiliary information.

The putfield predicate inImmutable associates a method with
an instance field if the method puts a value in this field. It is
conveniently named after the corresponding JVM instruction.

Degenerate Behavior, Data Managers. The degenerate behavior
category relates to classes with no methods at all, classes that have
a single method, or classes whose methods are very simple.

Data managers are classes whose main purpose is to manage the
data stored in a set of instance variables.

The definition of thegetter andsetter auxiliary predicates (in-
side theData Manager pattern) relies on a unique JTL mechanism,
theSCRATCHvalues, which will be telegraphically explained here.

In getter we require that all values returned from a non-void,
0-parameters method are copied fromS, whereS is a value that
is obtained (viagetfield) from a field F of the enclosing class.
Thefrom* predicate is the reflexive-transitive closure of the scratch
copying operator. Thus, the conditionall from* S ensures that

4 2006/10/4

box := !immutable, offers: { one instance field };

canopy := immutable, offers: { one instance field };

compound_box := offers: {
one !primitive instance field;
primitive instance field;

};

immutable := class offers: {
has instance field;
no visible instance field;
no instance method putfield _;

};

stateless := class offers: {
field => static final ;

};

common_state := class is T {
! final real_static field

} offers: {
no instance [field | method];

};

Figure 4.5. Degenerate State, Wrappers

function_pointer := ! abstract class offers: {
no field;
one public instance method;

};

function_object := ! abstract class offers: {
field;
one public instance method;

};

cobol_like := class offers: {
no instance [field | method];
one static method;

};

record := ! abstract offers: {
public instance field;
no ! public instance field;
no method;

};

data_manager := class is C offers: {
exist instance field;
exist service;
service => [setter | getter];

getter := ! void () returned: {
all from* S, S getfield F, C holds F;

};

setter := void (_), C offers F, F field {
putfield _ => putfield F, from* P,

P parameter;
exists putfield;

};
};

sink := class {
no method invokes _;

};

Figure 4.6. Degenerate Behavior, Data Managers

there is a chain of copy instructions from the value read from the
field F to every value that is returned from the method.

The workings ofsetter are similar, but relate to the flow of data
from the method’s parameter to a field of the class.

Summarizing this section we note that the definitions presented
here are much more concise and readable than those in [10]. This
is further discussed in the next section.

5. Definition of Patterns
This section discusses the difficulties that arise when one defines
patterns in a natural language. We will examine several micro
pattern definitions, taken from the original paper [10] and compare
them with the corresponding JTL queries.

First, we will consider theFunction Pointer pattern, which repre-
sents an action that can be stored in a variable, passed to method,
etc. In that sense, instances ofFunction Pointer classes are equiva-
lent to pointer to functions in procedural languages, or to function
values in functional languages.

This pattern was originally defined as:

“. . . classes which have no fields at all, and only a single
public instance method”[10]

A closer examination of this definition reveals a small problem: in
JAVA every class is a subclasses ofjava.lang.Object . Therefore,
everyJAVA class recognizes methods such aswait() , toString()

or hashCode() which are inherited fromObject . In other words,
there is no class with less than nine3 public methods.

Another source of confusion arises from the statement “no fields
at all”. Is it ok for a Function Pointer class to extend a class that
defines a private instance field? If we turn to the JTL definition for
Function Pointer (in Fig. 4.6) we see that it is clear, concise, and
unambiguous.

We will now examine theState Machine pattern which was orig-
inally defined as:

“An interface that defines only parameterless methods”[10]

This definition is (again) ambiguous since it is not clear how in-
herited methods should be handled. However, there is another prob-
lem that is related to the logical condition expressed by the defini-
tion. This problem becomes obvious when we write the correspond-
ing JTL definition
wrong := interface offers: { service => () };

Looking at the body of the JTL definition it is easy to see that
the conditionservice => () will trivially hold for empty sets.
Obviously, this was not the intention of theState Machine pattern
so we arrive at this correct version:
state_machine := interface offers: {

service => ();
has service;

};

Finally, we want to compare the JTL definition for theRestricted
Creation pattern with the originalJAVA code that we used in our
pattern detector. TheJAVA code is a 35-lines long method, which
checks aJAVA class (passed in as aJavaClass

4 parameter) and
returnstrue if the class is aRestricted Creation class.

First, we note that this code fragment is error prone since there is
no support inJAVA for quantification of sets. Thus, the programmer
has to manually code this logic via loops and other control-flow
primitives. This poses difficulties not only during development, but
also at the maintenance stage: if the conditions making the pattern
needs to be changed it is not easy to modify the code correctly.

Second, it is very difficult to understand the pattern that thisJAVA
method embodies. In other words, we cannot use this piece of code
to communicate the essence of the pattern to a human reader. This
is due to the non-declarative nature ofJAVA .

Comparing Fig. 5.1 with the JTL definition, we see that the JTL
version is easier to develop, maintain and understand:
restricted_creation := # is T {

no public constructor;
static field type_is X,

[T extends X | T implements X | T is X];

3 as of JDK 1.5
4 This type is defined by the Apache BCEL library.

5 2006/10/4

boolean isRestrictedCreation(JavaClass jc) {
HashSet supers = new HashSet();
supers.add(jc);

String spr = jc.getSuperclassName();
if (spr != null)

supers.add(spr);

String[] is = jc.getInterfaceNames();
for (int i = 0; i < is.length; ++i)

supers.add(is[i]);

boolean found = false ;
Field[] fs = jc.getFields();
for (int i = 0; !found && i < fs.length; ++i) {

if (!fs[i].isStatic())
continue ;

if (supers.contains(fs[i].getSignature()))
found = true ;

}
if (!found)

return false ;

Method[] ms = jc.getMethods();
for (int i = 0; i < ms.length; ++i) {

if (!ms[i].getName().endsWith(("init>")))
continue ;

if (ms[i].isPublic())
return false ;

}

return true ;
}

Figure 5.1. The JAVA code for detectingRestricted Creation
classes

};

6. Summary
Having seen the JTL definitions for micro patterns and some of
the problems induced by natural language definitions, we are now
in a good position to summarize the insights derived from the
translation process.

We identify two primary problems that are caused by non formal
definitions of patterns:
Imprecise terminology.The basic terms that are used in a natural
language are not well defined. Thus we do not know whether a
simple term such as “methods” include inherited methods, private
methods, hidden methods, etc. The design of JTL overcomes this
problem by these two complementing rules:

(i) Most JAVA keywords have a JTL predicate (with same name)
capturing the semantics of the keyword (e.g.,private , final ,
extends). Even if a keyword is implicit (such asabstract for in-
terfaces), from JTL’s point of view it is present;

(ii) Other relationships within theJAVA program are captured
by the standard library’s predicates. Most library predicates are a
single-line JTL expression, thereby making the library simple and
self explanatory.
Complicated Logic.Expressing complicated logical conditions
(and especially quantification) in a natural language is difficult.
Even the short description“a static field or a method”can be in-
terpreted in two different ways. This problem is eradicated in JTL,
since we have clear precedence rules and logical operators with
well-defined semantics. Unlike other languages from the logical
paradigm, complex logical conditions in JTL are terse and read-
able:

(i) JTL’s implicit subject passing, combined with the subject
chaining operator (“&”), eradicates more than half of the variables
that are mentioned in a predicate’s body (compared to the corre-
spondingDATALOG predicate);

(ii) Built in quantifiers eliminate most of the recursive calls that
are typical in logical programming.

Acknowledgements.We thank Grigory Fridberg for carrying out
part of the implementation, and for his work on JTL’s standard
library manual.

References
[1] K. Arnold and J. Gosling. The Java Programming Language.

Addison-Wesley Publishing Company, 1996.
[2] K. Beck. Smalltalk: best practice patterns. Prentice-Hall, Englewood

Cliffs, New Jersy 07632, first ed., 1997.
[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.

Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. John Wiley & Sons, 1996.

[4] S. Ceri, G. Gottlob, and L. Tanca.Logic programming and databases.
Springer Verlag, New York, 1990.

[5] S. R. Chidamber and C. F. Kemerer. Towards a metrics suite for
object oriented design. InOOPSLA’91.

[6] T. Cohen, J. Y. Gil, and I. Maman. JTL—the Java tools language. To
appear in the proc. of OOPSLA’06, 2006.

[7] J. O. Coplien. Advanced C++ Programmings Styles and Idioms.
Addison-Wesley Publishing Company, 1992.

[8] P. Deransart, L. Cervoni, and A. Ed-Dbali.Prolog: The Standard:
reference manual. Springer-Verlag, 1996.

[9] E. Gammaet al. Design Patterns: Elem. of Reusable OO Software.
Addison-Wesley Publishing Company, 1995.

[10] J. Gil and I. Maman. Micro patterns in Java code. InOOPSLA’05.
[11] M. Volter, A. Schmid, and E. Wolff.Server Component Patterns:

Component Infrastructures Illustrated with EJB. John Wiley & Sons,
Inc., 2002.

6 2006/10/4

