
Vol. 0, No. 0, Z

Better Construction with Factories
Tal Cohen and Joseph (Yossi) Gil
Department of Computer Science,
Technion—Israel Institute of Technology
Technion City, Haifa 32000, Israel

“The Factory-Owning Class Controls the Means of Production.”
K. Marx [14]

The polymorphic nature of object oriented programs means that client code ex-
pecting an instance of class C may use instead an instance of a class C ′ inheriting
from C. But, in order to use such a different instance, one must create it, and in
order to do so in current languages, must be familiar with the name of creating
class. To break this coupling, we propose the novel notion of factories, which are
class services (alongside methods and constructors) that manage the instance-
creation step of object construction. In making the case for factories we propose
a five-dimensional framework for understanding and analyzing the class notion in
various programming languages.
We show that factories can naturally replace the “creational” design patterns, and
describe the design and implementation of a JAVA language extension supporting
both supplier-side and client-side factories. Possible implementations in other
languages are discussed as well.

1 INTRODUCTION

Good programming languages support, at the language level, the general principle of hid-
ing implementation details from the client [19]. Indeed, most contemporary object ori-
ented programming languages let, sometime even force, the programmer to hide the im-
plementation details of methods that a class offers. An inspiring case in point is Meyer’s
principle of uniform access[15, p.57], stating that

“All services offered by a module[i.e., a class]should be available through
a uniform notation, which does not betray whether they are implemented
through storage or through computation.”

This paper starts from the observation that despite the progress in language design, there
is still a family of services which reveal more than they should of their implementation
secrets. These services are what is known ascreation proceduresin some languages and
constructorsin others. Constructors are distinguished from the other services that a class

Cite this article as follows: Tal Cohen, Joseph (Yossi) Gil: Better Construction with Facto-
ries, in Journal of Object Technology, vol. 0, no. 0, Z, pages 1–99,
http://www.jot.fm/issues/issues Z /

http://www.jot.fm/issues/issues_Z_/

BETTER CONSTRUCTION WITH FACTORIES

may offer in that the client cannot apply them to a polymorphic object; instead the client
is responsible for creating such an object, and therefore must know the precise name of
the class that creates it.

The polymorphic nature of classes is advertised as means for separating interface from
implementation. Object oriented polymorphism means that a client may use instances of
different subclasses to implement the same protocol. But, the trouble is that in order to be
able to use such instances, one needs to create them somewhere, and the creation process
is coupled with the name of the creating class.

Breaking this coupling seems to be an intriguing chicken and egg riddle: Interface (or
protocol) can be separated from implementation, but in order to select a particular imple-
mentation of a given protocol one must be familiar with at least one of these implementa-
tions. Our solution to this cyclic dilemma is by making the selection of an implementation
part of the interface. In the object-oriented terminology, this means that we allow a class
to offer a set of services, what we callfactories, for generating instances of its various
subclasses. Factories are first-class class members (alongside methods and constructors),
but, unlike constructors, factories encapsulate instance management decisions without
affecting the class’s clients.

Factories directly attack thechange advertising problem: Suppose that the implemen-
tation of a class (indeed, the internals of any software unit) is changed or specialized, but,
as is the case with inheritance or dynamic aspects, that the original version still remains.
Then, the fact that there was a change must be advertised to the clients that wish to enjoy
its benefits. Specifically, an instance of a classC ′ inheriting fromC can be used anywhere
an instance ofC is used; but clients must be aware thatC ′ exists, and be familiar with its
name and its particular repertoire of constructors, in order to create such instances.

Existing solutions to the change advertising dilemma can be found in several popular
frameworks, which act outside of the programming language. This includes, for example,
the J2EE [20] mechanism for obtaining instances of Enterprise JavaBeans (EJBs, [6]).
Clients must not directly invoke constructors for EJBs; rather, special methods of “home
objects” must be used, effectively encapsulating the creation process and providing the
platform with the ability to decide an instance of which (sub)class will be generated.

Likewise, users of the Spring Application Framework1 should only obtain instances
(of any class) by using special “bean factory” objects. The need for factories is further
evident from the popularity and usefulness of design patterns that strive to emulate their
functionality, including ABSTRACT FACTORY, FACTORY METHOD, SINGLETON [10],
and OBJECTPOOL [12]. However, both the frameworks and the design patterns introduce
certain restrictions that the developers must adhere to (such as never invoking constructors
directly). Just like these design patterns, factories are not compelled to return anewclass
instance. In not betraying the secret whether a new instance was generated or an existing
one was fetched, they can be thought as applying the principle of uniform notation to
instantiation. Much as with uniform access for “features” (attributes or functions) in
EIFFEL, factories prevent upheaval in client classes whenever an internal implementation

1http://www.springframework.org

2 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

2 TERMINOLOGY

decision of the class is changed.

More concretely, we describe the design and implementation of an extension to the
JAVA programming language to support factories. In this extension, factories act as meth-
ods that overload thenew operator. But, unlikenew overloading in C++, factories are not
concerned with memory allocation but rather with instance creation and specific subclass
selection decisions. We offer two varieties of factories:

• Client-side factorieshelp localize instantiation statements, whereby a re-
implementation can be selectively injected to certain clients.

• Supplier-side factoriesprovide classes with fine control over their instantiation, and
help in a global advertising of a change in the implementation.

Factories enable the encapsulated implementation of the “creational” design patterns
listed above, either for all clients (using supplier-side factories) or for specific ones (using
client-side factories). They provide a language-level solution to the change advertising
dilemma, without presenting developers with any restrictions or complications.

Outline Sec.2 starts by setting forth a common terminology for the discussion, and
tries to unify some of the different perspectives offered in the literature to the class con-
cept. Using this terminology, Sec.3 expands on the motivation, by highlighting certain
limitations of constructors. Factories are the subject of Sec.4, which describes their JAVA

syntax and some of the applications. This section also shows how factories support many
classical design patterns. Sec.5 describes how coupling between classes can be decreased
using factories, and Sec.6 describes the notion of client-side factories. Finally, Sec.7 dis-
cusses the extension of the factories idea to other programming languages and concludes.

2 TERMINOLOGY

There are many ways in which people perceive the notion of class: as a “repository for
behaviorassociated with an object” [2, p.13], a “unit of software decomposition” and
a “type” [15, pp.170–171], a “tool for creating new types” [21, p.223], a “group [of
objects]” [13, p.50]2, a “set of objects that share a common structure and a common
behavior” [1, p.93], etc. This section tries to unify these perspectives and propose a
terminology (a conceptual framework if you will) for comparing and understanding the
notion of a class in different programming languages.

We distinguish five, not entirely orthogonal, dimensions of class analysis:commonal-
ity, morphability, binding, encapsulation, andpurpose. The most interesting dimension
is purpose, by which we identify, for each syntactical element of a class, a programming-
language purpose. In Sec.3 we shall argue that, judged by these dimension of evaluation,
constructors make a bit of weird bird.

2but also a “template for several objects . . .[a description of]how these objects are structured internally”

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 3

BETTER CONSTRUCTION WITH FACTORIES

Let us now describe in greater detail each of the five dimensions in turn.

1. Commonality. This dimension makes the distinction betweencommonelements of
the class notion (e.g., class variables and methods in SMALLTALK) andparticular such
elements (e.g., instance variables and methods). More precisely, an element is common
if its incarnation in different instances of the class is identical; otherwise, it is particular.
Thus, particular elements may be used only in association with a specific class instance.
Also, common elements cannot access particular elements.

2. Morphability. Morphability indicates the class element’s ability to obtain a shape,
or be re-shaped, in a subclass. We identify morphable, re-morphable, and un-morphable
members. A class member obtains polymorphic behavior by being morphed in one class,
and re-morphed in another.

• Morphable members are those that have no shape yet, and may be shaped in
a subclass. They are known asabstract class members in some languages,
deferred in others.

• Re-morphablemembers have a shape, but can be re-shaped in a subclass. The
new shape may replace or refine the inherited one. Put otherwise, these are class
members that may be overridden in a subclass. In many languages, members are
re-morphable by default; in some, they must be explicitly marked as such (e.g., by
using thevirtual keyword in C++).

• Finally, un-morphablemembers have a shape that may not be altered by a subclass.
This pertains to common elements in all languages, and to data members in most
languages. Some languages allow the developer to explicitly mark a member as
un-morphable; e.g., using thefinal keyword in JAVA .

Different languages offer different levels for morphability for similar class members.
In EIFFEL, for example, a data member may be overridden by a method, making data
members re-morphable. In JAVA , data members may be hidden [11, Sect. 8.3.3] but not
overridden, making them un-morphable.

3. Binding. As the name suggest, in this dimension we make the distinction between
statically-bound and dynamically-bound elements. Of course, this distinction can be made
only for class elements which can be replaced or altered in a subclass. Un-morphable
functions in C++ are famous for being statically bound.

Observe that in most languages, commonality and binding are not orthogonal. Specifi-
cally, we find thatcommon elements are often statically bound. The linkage between static
binding and commonality is so entrenched that common methods and fields in languages
such as JAVA , C# and C++ are marked with thestatic keyword.

The phenomena can be explained by the reliance of dynamic binding on dispatching
information associated with individual objects. Common elements are statically bound
since they may exist even when there are no instances to the class.

4 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

2 TERMINOLOGY

4. Encapsulation. A class may encapsulate its elements. Languages exhibit great vari-
ability in encapsulation schemes. The tailor-made accessibility in EIFFEL, just as the
three encapsulation levels in C++, are orthogonal to the previously presented dimensions.
Conversely, in SMALLTALK encapsulation is linked with the element kind. Interestingly,
private methods in JAVA and C++ are statically bound (and, being invisible to sub-
classes, un-morphable).

5. Purpose. Classes, being a unit of software decomposition, can be subjected to Par-
nas’s [19] classical distinction between theinterfaceandmaterialization(which Parnas
calls “implementation”) perspectives of a software component. We say that the interface
and materialization arepurposesthat the class serves as a whole, and characterize its
elements by this purpose.

But, unlike the software components of the seventies, classes are instantiable. Accord-
ingly, we break the interface of a class into two facets: theforgeand thetype. Similarly,
we distinguish between three facets in the materialization: theimplementationof the type,
themill behind the forge, and themold into which instances are cast.

More specifically, theforgeof the class is the collection of operations that can be used
to create objects; thetype is the set of messages that these instances may receive, along
with their visibility specification; and, theimplementationis the body of the methods
executed in response to these messages. There is a subtle distinction between the mill and
the mold, which together realize the class’s forge: The mold is the memory layout which
instances of this class follow. It consists solely of field definitions. The mill is the set of
constructor bodies.

To understand these terms better, consider classVector from the standard JAVA

library. The forge ofVector , depicted in Fig.2.1(a), includes the signature of
the four constructors provided by the class: the default constructorVector() , the
copy constructorVector(Collection) , a variant that specifies the initial capacity
(Vector(int)), and a variant that specifies both the initial capacity and the capacity
growth increment (Vector(int , int)).

Fig. 2.1(c)shows the type ofVector , methods such asaddElement , capacity ,
and others, as well as fields such ascapacityIncrement andelementData . Su-
perclasses also add to the type; in this case, the type ofVector includes methods and
fields inherited from three superclasses. Each superclass and superinterface also adds an
upcast operator.

We see that the type includes the signature of all non-private fields and methods of
the class. Thus what we call type here is in fact the class’s structural type, to which JAVA

applies a name, making it a nominal type.

The type does not include details such as a specification of the order by which meth-
ods may be invoked, pre- and post-conditions, or other classes with which the class may
interact while implementing each method. All these may be thought of as the classproto-
col.

Themold for creating new objects is defined by the collection of all fields in this class

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 5

BETTER CONSTRUCTION WITH FACTORIES

Vector:
public Vector();
public Vector(Collection);
public Vector(int);
public Vector(int , int);

(a) The forge.

int capacityIncrement
int elementCount
Object[] elementData

32 bits

32 bits

32 bits

Fields inherited from superclasses

Hidden fields added by the JVM

(b) The mold.

Vector<E>:
protected int capacityIncrement;
protected int elementCount;
protected Object[] elementData;
public void addElement(E);
public int capacity();
// ... etc.

// From AbstractList:
public ListIterator listIterator()
public List subList(int , int)
// ... etc.

// From AbstractCollection:
public int size();
public void clear();
// ... etc.

// From Object:
public Object clone();
public void wait();
public void notify();
public boolean equals(Object);
// ... etc.

// Upcast operations:
public (AbstractList)();
public (AbstractCollection)();
public (Object)();
public (Serializable)();
public (Iterable<E>)();
public (Collection<E>)();
public (List<E>)();

(c) The type.

Figure 2.1: The forge, type and mold ofjava.lang.Vector .

and all of its supertypes. Specific languages or language implementations can include
hidden fields in the mold, such as run-time type information, the Virtual Method Table [8]
used in C++, etc.

Fig. 2.1(b)presents the mold defined by classVector . It includes fields defined in
Vector as well as any fields inherited from superclasses, along with any hidden field
added by the JVM.

Finally, theimplementationis the body of the methods defined by the class or any of
its superclasses, while themill is the body of the constructors defined in this class.

3 MOTIVATION (CONSTRUCTOR ANOMALIES)

Factories, the JAVA language extension proposed in this paper, are methods which return
new class instances. Syntactically, a factory is a method which overloads thenew operator
with respect to a certain class. This language extension requires no changes to the JVM.

Since factories are so related to constructors, we start the discussion with comments
on constructors. These comments underline the motivation for factories, and should help
in understanding the differences between the two concepts.

In mainstream object-oriented languages, clients of a class obtain instances using con-
structors. Analyzing constructors (in, e.g., JAVA or C++) with the terminology set in the
previous section, we find that they present three anomalies. First, constructors are simulta-

6 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

3 MOTIVATION (CONSTRUCTOR ANOMALIES)

neously common and particular: common—since they are invocable without an instance;
particular—since they work on an object.

Second, constructors are both un-morphable and re-morphable: un-morphable—since
they are not inherited, and re-morphable—since a subclass constructor must be a refine-
ment of a superclass one.

Third, it is mundane to see that constructors obey a static binding scheme, and it takes
just a bit of pondering to understand the difficulties that this scheme brings about. If
a classC ′ inherits fromC, thenC ′ should be always substitutable forC. An annoying
exception is made by constructor invocation sites in client code; these have to be manually
fixed in switching fromC to C ′.The Gang of Four [10, p.24] place this predicament first
in their list of causes for redesign, saying: “Specifying a class name when you create an
object commits you to a particular implementation instead of a particular interface”.

The confusion between static and dynamic binding penetrates into the constructor
code itself, i.e., into the mill. Method invocation from the mill follows a static binding
scheme in C++3; in JAVA and C#, however, dynamic binding is used. Neither approach
is without fault. Static binding can lead to illegal invocation of pure virtual methods.
Dynamic binding prevents methods, invoked from within the mill, from assuming that all
fields were properly initialized. Dynamic method binding in constructors leads, among
other things, to difficulties in implementing non-nullable types, as described by Fähndrich
and Leino [9]: during construction, fields of non-null types may contain null values.

It is interesting to note that in EIFFEL, constructors—known ascreation procedure—
can be viewed as purely particular, since they may only be invoked on some variable in
scope. The second confusion, however, between static and dynamic binding, remains. A
creation instruction such ascreate x.make 4 for some variablex of typeC is statically
bound, even if the creation proceduremake is overridden in the subclassC ′. To createx
as an instance of the subclass, a statement such ascreate { C ′} x.make 5 must be used.

In studying constructors further, we can identify three steps in an instance’s birth
process:

(a) Creation, in which the object’s actual type is selected, memory is allocated and
structured by the mold;

(b) Initialization, in which fields are set to their initial values; and

(c) Setup, in which the mill is executed.

These three steps exactly correspond to steps C1, C2 and C4 in the effects of a creation
instructioncreate x.make in EIFFEL [15, p.237]. The missing step, C3, is the attach-
ment of the newly created object to the reference variablex; however, in languages such
as JAVA and C++ the invocation of a constructor is anexpressionrather than a statement,

3Even forvirtual methods.
4Written as!! x.make in vintage EIFFEL.
5Written as! C ′! x.make in vintage EIFFEL.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 7

BETTER CONSTRUCTION WITH FACTORIES

and can be performed without assigning the result to a variable. (EIFFEL also supports
the invocation of a creation procedure as an expression [7, Sec. 8.20.18], in which case
step C3 is absent.)

The initialization step is realized in C++ by what is called the initialization list (written
just after the constructor’s signature). In JAVA and C# it is expressed using initializer
values (or defaults) for fields, whereas the instance initializer block and the constructor
bodies perform the setup. In EIFFEL, it is the assignment of standard default values to
fields.

None of these languages, however, provides the developer with control over thecre-
ationstep. (Note that overloading thenew operator in C++ grants the programmer control
over memory allocation, but not over the kind of object to be created, nor the decision if an
object has to be created at all.) We argue that good design of elaborate software systems
often requires intervention in the creation step. Indeed, there are a number of successful
design patterns, including ABSTRACT FACTORY, FACTORY METHOD, SINGLETON,and
OBJECT POOL,which address precisely this need. The control that these “creational pat-
terns” grant the programmer over the creation step is achieved by replacing constructor
signatures from the forge facet with a different, statically-bound, common method (e.g.,
getInstance)6.

Unfortunately, in contrast with most other patterns, the creational patterns cannot be
implemented in OO languages without revealing implementation details to the client: If
classT is implemented as a SINGLETON, then clients of this class cannot writenew T()
and expect the correct instance to be returned; rather, they must be aware of the non-
standard creation mechanism. As a result, if a class evolves during development so that
the new version employs (e.g.) an instance pool, all clients must be updated to use the
getInstance method rather than the constructors; the use of creational patterns cannot
be encapsulated as part of the class implementation.

Often, creational pattern also collide with inheritance. To enforce the use of a
getInstance method and prevent accidental direct access to the constructors, one has
to declare all constructors asprivate . But this habit implies that the class cannot be
subclassed, since subclasses must have access to some constructor of their parent class.
Defining the constructor asprotected does not solve the problem in JAVA , since clients
from the same package, which are not subclasses, will now be able to access it.

Worse still, since thegetInstance method must be shared, it cannot be over-
ridden in subclasses. Thus, if classC is subclassed byC ′, then the expres-
sionC ′.getInstance() is valid—but returns an instance ofC! This happens because
getInstance is technically part of the type, while conceptually being part of the forge.

Unlike constructors, factories can be defined as either common or particular. We shall
see that factories enable a clear-cut separation between creation and initialization and
setup, and allow for proper encapsulation of the creation step.

6Such methods are sometimes calledfactory methods. While serving a similar purpose, they are different
than our notion offactories.

8 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

4 FACTORIES

4 FACTORIES

ClassSTemplate in Fig. 4.1shows how the SINGLETON design pattern can be realized
by overridingnew with the factory defined in lines4–8. This factory is invoked whenever

1 class STemplate {
2 private static STemplate instance = null ;

4 public static new () {
5 if (instance == null)
6 instance = this ();
7 return instance;
8 }

10 STemplate() { /∗ ... setup code ...∗/ }
11 }

Figure 4.1: A Singleton defined using a factory.

the expressionnew STemplate() is evaluated, in classSTemplate or any of its
clients. Note that the factory is declaredstatic , which stresses that it binds statically,
and that (unlike constructors) it has no implicitthis parameter. Examining the factory
body we see that it always returns the same instance of the class. Thus, clients need
not be explicitly aware ofSTemplate being a singleton, and will not be affected if
this implementation decision is changed. (In the specific case of the SINGLETON design
pattern, clients can compare instances to realize that only one exists. Other patterns, such
as INSTANCE POOL, can be completely invisible to clients.)

In general, a factory must either return a valid object of the class, or throw an ex-
ception. (Should the factory’s return value benull , a Null Pointer Exception is
automatically thrown.)

Suppose thatC ′ is a subclass ofC. Then, a factory ofC can return an instance ofC ′.
This can be done by invoking any method which returns an instance ofC ′, including a fac-
tory of C ′—e.g., by a statement such asreturn new C ′(· · ·) . If the factory however
chooses to create an instance of classC, then it should invoke the constructor; yet writing
new C(· · ·) (e.g.,new STemplate() in the example) would recurse infinitely. In-
stead, the factory invokes the class constructor directly with the expressionthis (· · ·)
(line 6 in the example).

We have chosen to overload the keywordthis , or more particularly, its use as a
method call. Since the context prevents any ambiguity, there was no need to introduce a
new keyword:

• In constructors, the function callthis (· · ·) occurring in the first line can substi-
tute the mandated call tosuper with a call to a different constructor in the same
class (as in standard JAVA). Such a call does not create an instance, nor does it
return a value, and it must appear only as the very first step in the constructor body.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 9

BETTER CONSTRUCTION WITH FACTORIES

• In a factory,this (· · ·) stands for a call to a constructor of the class. The call
creates a new instance and returns a value; it may occur multiple times (or not at
all), and in any location inside the factory body. The factory can choose to return
the value generated by such a call. (In the case of theSTemplate class, the value
is cached to a static field, which is then returned.)

Note that the constructor can only be called from a factory in the same class; any use of
new C(· · ·) , either from outside classC or from inside it, will invoke a factory rather
than a constructor.

While there are many different solutions to the specific issue of singletons (e.g.,
declaring an object—rather than a class—in SCALA [18], or using prototype-based lan-
guages, such as CECIL [5]), the factory solution is not specific to singletons, and can be
used for any creational design pattern. More examples will be presented in the sequel.

As usual with overloading, a factory may have parameters, which are matched against
the actual parameters in the creation expression. A parameterized factory could be used
for, e.g., implementing the FLYWEIGHT design pattern: To do so, the factory returns, if
possible, an existing object from its pool, and only creates an instance if no such object
exists.

Like constructors, factories are not inherited. Had classC ′ inherited a factorynew()
from its superclassC, then the expressionnew C ′() might yield an instance ofC, con-
trary to common sense. Thus, the problem ofC ′.getInstance() yielding an instance
of C, described in Sec.3, does not occur with factories.

In contrast, when factories are employed, the expressionnew C() can yield an in-
stance ofC ′, since a subclass is always substitutable for its superclass.

Automatically Generated Factories

A definition of a factory with a certain signature hides the constructor with the same
signature. Such hidden constructors can only be invoked from the factory of a class,
regardless of their access level. Let us now deal with the dual situation, i.e., a constructor
without a factory. Backward compatibility of our extension is achieved by the following
perspective: An expression of the formnew S(· · ·) is always implemented by a factory
whose signature matches the actual parameters. This can be either a user-defined factory,
or anautomatically generated factory(AGFa). The automatic generation of factories is
governed by:

The AGFa Rule: Let c be a constructor with a signatureσ in a non-abstract classS.
Then, either (a)S has an explicit factory with signatureσ, or (b) it has static AGFa
with signatureσ, which invokesc.

Fig. 4.2 shows an example of the AGFa rule. The class defined in Fig.4.2(a)has a
factory with no parameters. It also has a two-parameters constructor, with no matching

10 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

4 FACTORIES

factory. Fig.4.2(b)shows the AGFa code that the compiler (internally) injects into the
class.

class Complex {
public static final Complex origin = new Complex(0,0);
public Complex(double x, double y) { /∗ instance setup ...∗/ }
public static new () { return origin; }

}
(a) A class in which the no-args factory returns a fixed instance.

public static new (double x, double y) {
return this (x,y);

}
(b) The factory added to the class by the AGFa rule.

Figure 4.2: A class (a) with a constructor and its AGFa (b).

Recall that in plain JAVA , instances of abstract classes cannot be created, even though
such classes have constructors. The following argument uses the AGFa rule to explain
this: Instances can only be created by anew expression, which must have a matching
factory. However, by theAGFarule, abstract classes in plainJAVA do not have factories.

Conversely, if an abstract classSa does define factories, then you can write
new Sa(· · ·) in your code. Fig.4.3 shows an abstract class,ScrollBar , with a fac-
tory. This example is modeled after the famous example [10, p.87] of the ABSTRACT

FACTORY design pattern. The code in the figure improves on the original implementation
of the design pattern, in that the client is not aware that an abstract factory stands behind
the scenes of the simple callnew ScrollBar() . (As we shall see later, the internal
implementation of the widget factory class itself can also be improved with factories.)

public abstract class ScrollBar {
public static new () {

WidgetFactory f = WidgetFactory.currentFactory();
return f.CreateScrollBar(); // Select concrete subclass

}
// ... rest of the class omitted

}

Figure 4.3: An abstract class with a factory.

As shown in Fig.4.4, interfaces may also have factories. The figure shows an inter-
face,DirectoryEntry , whose factory makes it possible to obtain an instance of either
of two implementing classes,Folder andFile , depending on the parameter value.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 11

BETTER CONSTRUCTION WITH FACTORIES

public interface DirectoryEntry {
public static new (String name) {

if (FileSystem.isDirectory(name))
return new Folder(name);

return new File(name);
}
// ... rest of the interface omitted

}

Figure 4.4: An interface with a factory.

5 BETTER DECOUPLING WITH FACTORIES

The use of factories in interfaces can eliminate coupling between client code and library
code. Consider, for example, the JAVA collection libraries. The standard library designers
require, in very strong words, that interface types (likeList andSet) will be used for
method arguments:

“ . . . it is of paramount importance that you declare the relevant parameter
type to be one of the collection interface types.Neveruse an implementation
type.”

– [3, p.526]; emphasis in the original.

Similar recommendations apply to return types, field types, etc., all in spirit of Can-
ning et al.’s original suggestions for separating the type and class notions using inter-
faces [4]. The coupling of client code to concrete implementation is indeed reduced by
following this recommendation. But, such a coupling still remains, particularly at the
point where a client is required to create an object.

Interfaces with factories can eliminate this coupling. In the case of theList in-
terface, clients can generate instances of some default implementation by writing (say)
new List() . The factory can choose the proper concrete implementation, possibly
based on hints provided by the client. Fig.5.1 provides an example factory that can be
used by theList class in JAVA ’s collections framework. Should new and improved
implementations appear in future versions of the JAVA class libraries, this factory can
be upgraded, and all clients will immediately benefit from the change. This solves the
change advertising dilemmafor new implementations of interfaces.

We would like to draw attention to the fact that following the recommendation of
using interfaces rather than classes as method parameters, may in some situationsin-
crease the burdenon clients rather than reducing it. Consider the learning effort of a
user in search of a specific service in a software library. Suppose that this service is pro-
vided by a methodm in an interfaceI. Then, beforem can be invoked, the user must
search for all the different implementation ofI, say classesC1, C2, C3, . . ., study them,
and choose which of these to instantiate in order to generate an instance ofI. Further,
suppose thatm takes a parameter of type interfaceI ′. Then, the user must also search

12 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

5 BETTER DECOUPLING WITH FACTORIES

public interface List {
/∗∗
∗ @param synch indicates if a thread−safe list is needed
∗ @param randomAccess indicates if O(1) element access is needed
∗/

public static new (boolean synch, boolean randomAccess) {
if (synch) {

if (randomAccess)
return new Vector();

return Collections.synchronizedList(new LinkedList());
}
// Else, synchronization is not needed.
if (randomAccess)

return new ArrayList();
return new LinkedList();

}
// ... rest of the interface omitted.

}

Figure 5.1: One possible factory for theList interface.

for all implementations ofI ′, say classesC ′
1, C

′
2, C

′
3, . . ., study them all and choose the

one appropriate for instantiation prior to invoking methodm. If the constructor of the
chosen class expects a third interface parameterI ′′, then, the user must further search for
implementationsC ′′

1 , C ′′
2 , C ′′

3 , . . . of I ′′, etc.

A small example is methodSecurity.getProviders in the JAVA standard li-
brary taking aMap as a parameter. In this parameter, the user can provide a set of se-
lection criteria. Before the method may be used, even for testing or experimentation,
the programmer must create an object representing such a test, and to do so, choose an
implementation of theMap interface—but there are no less than seventeen such imple-
mentations in version 1.5 of the JDK.

Another example is methodJPanel.setBorder() from the Swing GUI libraries,
which expects a parameter of theBorder interface. In order to use this method, the client
must be spend time in studying the different implementations of this class, only to realize
that yet a third class,BorderFactory , should be used to generate instances. With
factories, the functionality ofBorderFactory can be embedded inBorder .

Searches for implementations of a given interface is usually not easy: implementations
may be done by various different vendors, the list may change over time, and the selection
between these may require a hefty learning effort. Interfaces (and abstract classes) with
factories can therefore simplify the adoption of new, unfamiliar classes. Sometimes such
a search is inevitable, but in many cases, it can be saved if the interface itself provides a
reasonable implementation.

Writing a unit test code for a class whose methods take interface parameters is greatly
simplified if these interfaces give ready-made instantiations. It is even conceivable that
interfaces provide a stub implementation just for this purpose. For example, the standard

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 13

BETTER CONSTRUCTION WITH FACTORIES

JAVA interfaceRunnable can provide a stub implementation (perhaps defined as an
inner class) in which therun() method does nothing.

6 CLIENT-SIDE FACTORIES

All examples so far defined factories in the same class on which the overload takes place.
Factories of this sort are calledsupplier-side factories. It is also possible to defineclient-
side factories, as demonstrated in Fig.6.1.

1 class Bank {
2 public static new Account(Customer c) {
3 if (c.hasBadHistory()) return new LimitedAccount(c);
4 // LimitedAccount is a subclass of Account
5 return Account. new Account(c);
6 }
7 // ... rest of the class omitted
8 }

Figure 6.1: A client-side factory forAccount s in classBank .

Line 2 in the figure starts the definition of a factory. Unlike the previous examples,
this definition specifies the returned type. The semantics is that the definition overloads
new when used for creatingAccount objects from within classBank . It is invoked
in the evaluation of an expression of the formnew Account(c) (wherec is of type
Customer or any of its subclasses) in this context. This factory chooses an appropriate
kind of Account depending on the particular business rules used by the enclosing class.

Unlike supplier-side factories, client-side factoriesare inherited by subclasses. There-
fore, the factory from Fig.6.1 will also be used for evaluating expressions of the form
new Account(c) in subclasses ofBank .

This client-side factory can be used by other classes as well, by writingBank. new
Account(· · ·) , or, after making a staticimport of classBank , by simply writingnew
Account(· · ·) .

Fig. 6.2 shows an implementation of the ABSTRACT FACTORY pattern with static
binding. ClassesMotifWidgetFactory and PMWidgetFactory each overload
the new operator of all the GUI widgets. A client wishing to use Motif, may
write import static MotifWidgetFactory.* . This may be changed later to
import static PMWidgetFactory.* , should the GUI library need replacing.

The full semantics of anew call can now be explained as follows: Whenever a class is
used in anew expression, its supplier-side factories enjoy an implicitimport static .
A client-side factory in scope can override this import.

The abstract widget factory example we have just described suffers from the problem
that switching from Motif to PM requires a change to the client’simport static

14 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

6 CLIENT-SIDE FACTORIES

class MotifWidgetFactory {
public new ScrollBar() { return new MotifScrollBar(); }
public new Window() { return new MotifWindow(); }
// ... factories for other widget classes ...

}

class PMWidgetFactory {
public new ScrollBar() { return new PMScrollBar(); }
public new Window() { return new PMWindow(); }
// ... factories for other widget classes ...

}

Figure 6.2: Widget-factory classes defined using client-side factories.

statements. But there may be many such statements, in many source files. The remedy is
to simply define an empty class,

class WidgetFactory extends PMWidgetFactory {}

and statically import it in all clients. This will direct all widget factory calls to
PMWidgetFactory . The GUI can now be globally replaced with a single change,
specifically replacingWidgetFactory ’s superclass.

Dynamically Bound Factories

The aboveWidgetFactory can be thought of as a statically-bound implementation
of the ABSTRACT FACTORY pattern, in that the decision on the concrete implementa-
tion is made at compile time. To make a dynamically-bound widget factory, we need
dynamically-bound factories. These are defined, as the name suggests, without the
static keyword. Fig.6.3 shows how such factories can be used in the classical im-
plementation of the ABSTRACT FACTORY design pattern.

Fig. 6.3(a)shows the abstract factory, while Fig.6.3(b) shows two concrete imple-
mentations. The factories of the widgets are all non-static and obey a dynamic bind-
ing scheme. Also worthy of note is the factory of this abstract class itself, which (while
realizing the SINGLETON design pattern) determines at runtime the correct GUI library.

Fig. 6.4 shows how dynamically-bound factories can be used to implement the
FACTORY METHOD design pattern (also known as VIRTUAL CONSTRUCTOR). The
code in this figure implements the classic example (from [10, p.107]) of an abstract
Application class, bound to an abstractDocument class. Each concrete subclass
of Application can bind itself to a concrete subclass ofDocument , by overriding
the dynamically-bound factories. The resulting code is very similar to that in the original
GoF example, except that thenewDocument method uses ordinary construction syntax
(implemented using our notion of a factory) rather than the nonstandard “factory method”
dictated by the pattern.

Syntactically, the invocation of a dynamically-bound factory defined in classC for
objects of classS is written asc. new S(· · ·) , wherec is an instance of classC. The

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 15

BETTER CONSTRUCTION WITH FACTORIES

public abstract class WidgetFactory {
public abstract new ScrollBar();
public abstract new Window();
// ... and other widgets.

private static WidgetFactory f;
public static new () {

if (f != null) return f;
if (GUI.isMotif()) return f = new MotifFactory();
if (GUI.isPM()) return f = new PMFactory();
//... etc.

}
}

(a) The abstract widget factory class

class MotifWidgetFactory extends WidgetFactory {
public new ScrollBar() { return new MotifScrollBar(); }
public new Window() { return new MotifWindow(); }
// ...

}

class PMWidgetFactory extends WidgetFactory {
public new ScrollBar() { return new PMScrollBar(); }
public new Window() { return new PMWindow(); }
//...

}
(b) Two concrete widget factory subclasses

Figure 6.3: Using non-static factories to implement a dynamically bound abstract
factory class.

prefix “c. ” can be dropped for code inside classC (so it is replaced with thethis
reference).

It is not a coincidence that this looks very much like the JAVA syntax for creating an
instance of a dynamic inner class:c. new I(· · ·) , wherec is an instance of the containing
class (possiblythis) andI is the inner class’s name. The constructor of a (non-static)
inner class in JAVA is a method of the containing class, and not of the class it constructs—
just like a client-side factory is a member of the containing class, and not of its target class.
In fact, Nystrom, Chong and Myers [16] have shown that if the concept of inner classes is
extended (usingnested inheritance), most of the need for the FACTORY METHOD design
pattern disappears. But while nested inheritance has many distinct advantages with regard
to code modularity and the creation of extensible software systems, it only solves the
need for factory methods for classes defined inside the same module as their client. Also,
it does not remove the need for instance-management patterns like INSTANCE POOL or
FLYWEIGHT.

16 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

7 DISCUSSION

abstract class Application {
List<Document> docs;
protected abstract new Document();

public void newDocument() {
// Handles the File|New menu option
doc = new Document(); docs.add(doc); doc.open();

}

// ... rest of the class omitted
}

(a) The abstractApplication class

class MyApplication extends Application {
protected new Document() {

return new MyDocumentType(); // A concrete subtype
}

// ... rest of the class omitted
}

(b) One possible concrete subclass

Figure 6.4: Implementing pattern FACTORY METHOD with dynamically bound factories.

7 DISCUSSION

We believe factories to be a minor addition to the language syntax, which may still be of
major importance in streamlining language design. We have implemented factories as a
JAVA extension using the Polyglot [17] extensible compiler framework (v. 2.0a4). This
took approximately two workdays of a single programmer.

In our implementation, supplier-side factories (both explicit and AGFa) are realized as
methods namednew in the container class. The return type ofnew is the containing
class itself.

Client-side factories are stored in the client, and are namednewclassable,
where classableis the fully-qualified target class name, with every dot replaced by
dot . For example, the factory forAccount s in classBank (Fig. 6.1) is realized as
a method callednewcomdotbankdotAccount (assumingAccount ’s fully
qualified name iscom.bank.Account). The return type of client-side factories is the
target type (e.g.,Account).

Any use ofnew is replaced by the proper method invocation, wrapped in a test that
ensures a non-null value is returned (and throws an exception otherwise).

The addition of factories to interfaces is less straightforward, since interfaces in JAVA

cannot contain any concrete methods. To produce such methods, our modified JAVA com-
piler synthesizes an inner class for the interface, and the factories reside in this class.
Thus, an interface with one or more factories will contain astatic inner class called
$NewHolder$, which in turn contains thenew methods representing the factories.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 17

BETTER CONSTRUCTION WITH FACTORIES

Our implementation generates bytecode that can be used on any JAVA virtual machine.
As discussed in Sec.4, the introduction of AGFas implies that JAVA -with-factories is fully
compatible with existing JAVA source code. However, the code generated by our compiler
assumes that all instantiated classes have been compiled using the same compiler, and
thus have supplier-side factories (either explicit or AGFa). If factories are integrated into
the JAVA language, full backwards compatibility with existing, pre-compiled classes can
be achieved by having the class-loader (rather than the compiler itself) add any required
AGFa to each class. This will work equally well for old and newly-compiled classes.

Clearly, the notion of factories is not limited to JAVA alone. Note that it is not so
difficult to approximate supplier-side—but not client-side—factories in SMALLTALK , by
overriding thenew class method. Adding factories to C# seems rather straightforward,
but it might take some cunning to add them to C++, since the language introduces two
obstacles. The first obstacle is that C++ already features a mechanism for overloading the
new operator; yet this mechanism is focused on the memory allocation problem rather
than on instance generation. One possible solution is to introduce a new keyword, such
asfactory , to the language. Declarations forfactory new can then exist alongside
those foroperator new . Such definitions can include both supplier-side factories (no
explicit return type) and client-side ones (with a specific return type). Client calls to
new will then be redirected to the factory, and should the factory decide to create a new
instance, thenew operator will be used for memory allocation (as before).

The second obstacle, however, is not merely syntactical: in C++, variables of any
type can be defined on the stack rather than dynamically allocated. Yet given factories,
the compiler may not know in advance the amount of memory to allocate on the stack
for any given variable. We could require that only classes with no factory in scope (i.e.,
no supplier-side factory at all and no client-side factory in scope) may be defined on the
stack. Factories thus introduce a dichotomy, similar to C#’s value vs. reference types or
EIFFEL’s expanded vs. reference types, into the language.

The EIFFEL language presents a different challenge for introducing factories. Unlike
constructors in C++ or JAVA , creation procedures in EIFFEL can have any desired name.
The advantage of this approach is that the distinction between the different kinds of ob-
jects that may be created is not by the kind of arguments, but rather through a meaningful
name.

In terms of syntax design, the problem is that we must find a way, other than a special
name, to distinguish between factory methods (which have no object to work on), and
methods and creation procedures (which start their work with a system-supplied object.)

We propose to the integration of factories into EIFFEL by introducing a new part to
the EIFFEL class declaration, alongsidefeature s, create s, etc. The part is called
factory , and it may be included only in non-expanded types. Following EIFFEL’s
accessibility rules, a class may provide different factories to different client classes by
qualifying thefactory part with a type list.

Supplier-side factories have the return type “like Current ”; any other return type
indicates a client-side factory.

18 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

7 DISCUSSION

A subclass may re-classify a creation procedure as a factory (or vice-versa) when over-
riding it, and in particular, the default creation procedure,default_create (defined
in the root classANY) may be changed to a factory by any class that so desires. Following
the principle of uniform access, clients that include a creation instruction (or a creation
expression) employ the exact same syntax regardless of whether a creation procedure or
a factory is being used. The syntaxcreate x.make is used by clients to obtain an in-
stance, regardless of whethermake is a creation procedure or a factory. Interestingly, the
distinct name for each factory and creation method implies that this extension maintains
backwards compatibility with existing code, without resorting to automatically-generated
factories (AGFas).

Fig. 7.1 shows an EIFFEL version of the singleton class from Fig.4.1. This class

1 class
2 S_TEMPLATE

4 factory −− obtain an instance
5 default_access: like Current is
6 once
7 create Result .instance
8 end

10 create { NONE} −− private instance creation mechanism
11 instance is
12 do
13 −− initialize fields, etc.
14 end

16 end −− class STEMPLATE

Figure 7.1: A singleton defined in EIFFEL using a factory.

re-classifiesdefault_access as a factory, so clients can use the creation instruction
create x (for a variablex of typeS_TEMPLATE) to obtain the shared instance.

As we can see from the figure (line7), no special syntax is needed to create an in-
stance from inside the factory (the equivalent of the specialthis () call in the JAVA

version): Since a class may include both creation procedures and factories, each with dis-
tinct names, there is no risk of undesired recursion. Whenever a new instance is required,
the factory simply calls a (possibly private) creation procedure.

REFERENCES

[1] G. Booch.Object Oriented Design with Applications. Benjamin/Cummings, 1991.

[2] T. A. Budd.An Introduction to Object-Oriented Programming. Addison-Wesley, 1st

ed., 1991.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 19

BETTER CONSTRUCTION WITH FACTORIES

[3] M. Campione, K. Walrath, and A. Huml.The Java Tutorial: A Short Course on the
Basics. Addison-Wesley, 2000.

[4] P. S. Canning, W. R. Cook, W. L. Hill, and W. G. Olthoff. Interfaces for strongly-
typed object-oriented programming. InOOPSLA’89.

[5] C. Chambers. The Cecil language, specification and rationale. Technical Report
TR-93-03-05, University of Washington, Seattle, 1993.

[6] L. G. DeMichiel, L. U. Yalçinalp, and S. Krishnan. Enterprise JavaBeans specifica-
tion, version 2.0. http://java.sun.com/j2ee/, 2001.

[7] ECMA International.Standard ECMA-367: Eiffel Analysis, Design, and Program-
ming Language. ECMA International, 2005.

[8] M. A. Ellis and B. Stroustrup.The Annotated C++ Reference Manual. Addison-
Wesley, 1994.

[9] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an
object-oriented language. InOOPSLA’03.

[10] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides.Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[11] J. Gosling, B. Joy, G. L. J. Steele, and G. Bracha.The Java Language Specification.
Addison-Wesley, 3rd ed., 2005.

[12] M. Grand.Patterns in Java, Volume 1. John Wiley & Sons, 1998.

[13] I. Jacobson.Object-Oriented Software Engineering - A Use Case Driven Approach.
Addison-Wesley, 1st ed., 1992.

[14] K. Marx. Das Kapital: Kritik der politischen Oekonomie. Otto Meissner, 1867.

[15] B. Meyer.Object-Oriented Software Construction. Prentice-Hall, 2nd ed., 1997.

[16] N. Nystrom, S. Chong, and A. C. Myers. Scalable extensibility via nested inheri-
tance. InOOPSLA’04.

[17] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible compiler
framework for Java. InCC’03.

[18] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, and M. Zenger. An overview of the Scala programming
language. Technical Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[19] D. L. Parnas. Information distribution aspects of design methodology. InIFIP’71.

[20] B. Shannon. Java 2 platform enterprise edition specification, v1.4.
http://java.sun.com/j2ee/j2ee-14-fr-spec.pdf, 2003.

[21] B. Stroustrup.The C++ Programming Language. Addison-Wesley, 3rd ed., 1997.

20 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

